Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r...Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.展开更多
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak ...For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak foundation in a hygro-temperature environment. The doubly-curved MEE shallow shell types include spherical shallow shell, cylindrical shallow shell, saddle shallow shell, and elliptical shallow shell subjected to blast load are investigated. The Maxwell equation and electromagnetic boundary conditions are used to determine the vary of the electric and magnetic potentials. The MEE shallow shell's equations of motion are derived from Hamilton's principle and refined higher-order shear theory. Then, the IGA method is used to derive the laws of natural frequencies and dynamic responses of the shell under various boundary conditions. The accuracy of the model and method is verified through reliable numerical comparisons. Aside from this, the impact of the input parameters on the free and forced vibration of the doubly-curved MEE shallow shell is examined in detail. These results may be useful in the design and manufacture of military structures such as warships, fighter aircraft, drones and missiles.展开更多
As underground excavations are getting deeper and field stresses increase, the behavior of intact rock blocks plays an increasingly important role in understanding and estimating the overall rock mass strength. To mod...As underground excavations are getting deeper and field stresses increase, the behavior of intact rock blocks plays an increasingly important role in understanding and estimating the overall rock mass strength. To model the brittle behavior of intact rock blocks, the stress–strain curve is usually idealized considering a linear strength mobilization approach(cohesion-weakening-friction-strengthening, CWFS),however, it is well recognized that rock presents a nonlinear behavior in terms of the confining stress.This study extends the strength mobilization in brittle failure of rock using nonlinear criteria. To determine the model parameters, a standard statistical method that uses the complete laboratory stress–strain curves of the intact rock is employed. Several hypotheses of linear and nonlinear models are statistically compared for different types of rock and confining stress levels. Results demonstrate that the best approach to model the brittle failure of rock is to consider a nonlinear strength envelope, such as the Hoek-Brown criterion assuming a residual uniaxial compressive strength different from zero and a mi parameter that increases, both with simultaneous mobilization. This model helps to recreate highconfining conditions and a more realistic transition between peak and post-peak strength. The obtained parameters are discussed and compared with literature values to verify the validity and to develop guidelines for the estimation of parameters, providing an objective mobilization criterion. Finally, the nonlinear model was applied to a finite element code and extended to a tunnel scale in the brittle rock under high-stress conditions. A reasonable fit between the simulations and the in-situ overbreak measurements was found.展开更多
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac...Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section.展开更多
Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their d...Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their decomposition due to low resistance towards salinity and hence polymer composites have been explored to showcase their mechanical stability to withstand transverse and impact loads.To this end,the mechanical properties of S-Glass/carbon fiber reinforced polymer composite were experimentally investigated and higher specific strength and stiffness of the composite in comparison to many metallic materials used for submarine hull were reported.The obtained experimental values were used for the static and dynamic crash analysis of the bow,stern and foil through Finite Element Analysis(FEA);where depth of travel was varied from sea surface level of 0-7000 m.Submarine assembly was later developed with the optimum shape and thickness of each part.We also report the nonlinear crash analysis upon impact at velocity ranging from 3 to 21 m/s.Besides,kinetic energy,acceleration peak and internal energy in struck submarine revealed that travel depth 1750 m and 3500 m is recommendable,more particularly,crash safety factor of the submarine is found to be within limit when submarine encounters crash at 1750 m.展开更多
Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust ...Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust double hypergeometric function. The results presented in this article are based essentially upon the hypergeometric summation theorems of Kummer and Dixon.展开更多
Purpose: This paper tries to understand the dynamics of scientific communication systems during crises by investigating as a case study the blogging activities that took place during the period of the 2011 earthquake ...Purpose: This paper tries to understand the dynamics of scientific communication systems during crises by investigating as a case study the blogging activities that took place during the period of the 2011 earthquake and related events in Japan. Interactions between bloggers and registered users are studied quantitatively and qualitatively at Sciencenet.cn, an influential science-related blogosphere in China.Design/methodology/approach: The editors of Sciencenet.cn compiled a special issue of science blog articles under the title Analysis of the Japanese Earthquake. We developed a spider program and downloaded from this special issue the metadata about title, content,publishing time, total read count, reply count and recommendation count, and further collected information about bloggers and recommenders. We then sent a short message to the bloggers who wrote articles on these emergencies, asking for their educational and professional background.Findings: We found that knowledge reflected in the blog articles is strongly related to the educational and professional background of bloggers. Knowledge diffusion is facilitated by interactions, such as recommendations, comments and answers. Interactions via comments and recommendations are of an assortative nature: A blog article is more likelyto be commented on and recommended by those bloggers who write on the same or similar topics than by those writing on a different one. Registered users tend to give comments on articles dealing with the topic that they recommend, and vice versa.Interaction in the intersection of two or three topics is more intense than that within one topic. The impact of blog articles is also influenced by other factors, such as the reputation of the blogger and the type of information they contain.Implications and limitations: It is confirmed that studying blogs is a valid approach within informetric studies. Yet, we only studied one triple(earthquake, tsunami, nuclear disaster) event based on data originating from one Chinese blog website. More events should be studied.Originality/value: Informetric studies based on blogs are still relatively few. Using science blogs and combining comments on a triple event with the knowledge background of bloggers in China is even less common. As such this contribution enhances our knowledge on this new form of science communication activity.展开更多
This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) d...This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte-Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise.展开更多
Background:This study aims to assess the effects of a forestation program and climate change on the annual and seasonal water balance of the Bogowonto catchment(597 km^(2))in Java,Indonesia.The catchment study is rare...Background:This study aims to assess the effects of a forestation program and climate change on the annual and seasonal water balance of the Bogowonto catchment(597 km^(2))in Java,Indonesia.The catchment study is rare example in Indonesia where forestation has been applied at the catchment level.However,since the forestation program has been initiated,evaluations of the program only focus on the planting area targets,while the environmental success e.g.,impacts on the hydrological processes have never been assessed.This study used a calibrated Soil and Water Assessment Tool(SWAT)model to diagnose the isolated and combined effects of forestation and climate change on five water balance components,namely streamflow(Q),evapotranspiration(ET),surface runoff(Q_(s)),lateral flow(Q_(l))and base flow(Q_(b)).Results:The results show that from 2006 to 2019,forest cover has increased from 2.7% to 12.8% of the total area,while in the same period there was an increase in the mean annual and seasonal temperature,rainfall,and streamflow.Results of SWAT simulations show that changes in the mean annual and seasonal water balance under the forestation only scenario were relatively minor,while changes were more pronounced under the climate change only scenario.Based on the combined impacts scenario,it was observed that the effects of a larger forest area on the water balance were smaller than the effects of climate change.Conclusions:Although we found that forestation program has minor impacts compared to that of climate change on the hydrological processes in the Bogowonto catchment,seasonally,forestation activity has decreased the streamflow and surface runoff during the wet season which may reduce the risk of moderate floods.However,much attention should be paid to the way how forestation may result in severe drought events during the dry season.Finally,we urge the importance of accounting for the positive and negative effects in future forestation programs.展开更多
This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF...This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF)excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness(k_(1))and shear stiffness(k_(2)).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions(BCs),and foundation stiffness on dynamic response of B-i HLC plates is carried out.展开更多
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order...In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.展开更多
The dispersion of magnetic nanoparticles in matrix is crucial to ensure optimum performance of the composite.The difficulty level of achieving good dispersion is further increase when a multi-phases of matrix is prese...The dispersion of magnetic nanoparticles in matrix is crucial to ensure optimum performance of the composite.The difficulty level of achieving good dispersion is further increase when a multi-phases of matrix is present.A pre-coating technique of magnetic nanoparticles with polypropylene using ball-mill prior to melt-blending process was employed to prepare a multi-phases thermoplastic natural rubber composite.The effect of filler loading(2 wt%-10 wt%) on morphology,structure,magnetic properties,thermal stability and dynamic mechanical properties of the composites were investigated.It was found that the NiZn ferrite nanoparticles act as nucleating agent to form beta isostatic polypropylene thermoplastic composites.The composites’ magnetic properties are directly dependent on the filler concentration.The dispersion of magnetic fillers in polymer matrix plays role in affecting the magnetic properties and thermal stability.The preference of filler to locate at amorphous phase has distorted the chain orientation of natural rubber and polypropylene.Hence,the polymorphism and crystallinity of the matrix varied as the filler loading increased,affecting the dynamic mechanical properties.It was found that 8 wt% NiZn nanocomposite exhibits highest E’ and tanδ,indicating the dynamic mechanical properties of NiZn nanocomposite are affected by β-phase degree.展开更多
While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is curr...While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.展开更多
This study is an investigation into cyberattacks on autonomous vessels,focusing on previous“real-world”cyberattacks and their consequences.The future of commercial and noncommercial shipping is moving toward autonom...This study is an investigation into cyberattacks on autonomous vessels,focusing on previous“real-world”cyberattacks and their consequences.The future of commercial and noncommercial shipping is moving toward autonomous vessels.Autonomous ships can provide significant financial and logistical benefits for shipping companies and their stakeholders.However,these vessels suffer from shortcomings concerning cybersecurity.Previous cyberattacks are investigated to understand how the command system of an autonomous ship is infiltrated,the consequences of an attack,and the shortfalls of the security of the vessel.This aim is achieved via a literature review concerning cyberattacks on autonomous vessels with a focus on sources indicating how the security systems of previous vessels were breached,the consequence of said cyberattacks,and their capability for recovery.Sources used include Web of Science,Scopus,Google Scholar,Mendeley,Zotero,SciFinder,broadsheet,and newspaper articles.The results of the literature review showed that autonomous vessels are significantly vulnerable to cyberattacks.Autonomous vessels were determined to have relatively easy-to-breach security systems.In most cases,the consequences of a cyberattack had a negative financial impact,a loss of cargo,and a potential breach of oceanic airspace,resulting in military action.The vessels analyzed were left“dead in the water”until they were recovered,and after a severe attack,the affected shipping company servers suffered potential weeklong incapacitation.This study also aims to fill the gaps in the transport industry and maritime market concerning the security of autonomous vessels and viable recovery procedures.展开更多
A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adap...A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts.展开更多
This paper presents an adaptive step-size modified fractional least mean square (AMFLMS) algorithm to deal with a nonlinear time series prediction. Here we incorporate adaptive gain parameters in the weight adaptati...This paper presents an adaptive step-size modified fractional least mean square (AMFLMS) algorithm to deal with a nonlinear time series prediction. Here we incorporate adaptive gain parameters in the weight adaptation equation of the original MFLMS algorithm and also introduce a mechanism to adjust the order of the fractional derivative adaptively through a gradient-based approach. This approach permits an interesting achievement towards the performance of the filter in terms of handling nonlinear problems and it achieves less computational burden by avoiding the manual selection of adjustable parameters. We call this new algorithm the AMFLMS algorithm. The predictive performance for the nonlinear chaotic Mackey Glass and Lorenz time series was observed and evaluated using the classical LMS, Kernel LMS, MFLMS, and the AMFLMS filters. The simulation results for the Mackey glass time series, both without and with noise, confirm an improvement in terms of mean square error for the proposed algorithm. Its performance is also validated through the prediction of complex Lorenz series.展开更多
Purpose: Big data offer a huge challenge. Their very existence leads to the contradiction that the more data we have the less accessible they become,as the particular piece of information one is searching for may be b...Purpose: Big data offer a huge challenge. Their very existence leads to the contradiction that the more data we have the less accessible they become,as the particular piece of information one is searching for may be buried among terabytes of other data. In this contribution we discuss the origin of big data and point to three challenges when big data arise: Data storage,data processing and generating insights.Design/methodology/approach: Computer-related challenges can be expressed by the CAP theorem which states that it is only possible to simultaneously provide any two of the three following properties in distributed applications: Consistency(C),availability(A) and partition tolerance(P). As an aside we mention Amdahl's law and its application for scientific collaboration. We further discuss data mining in large databases and knowledge representation for handling the results of data mining exercises. We further offer a short informetric study of the field of big data,and point to the ethical dimension of the big data phenomenon.Findings: There still are serious problems to overcome before the field of big data can deliver on its promises.Implications and limitations: This contribution offers a personal view,focusing on the information science aspects,but much more can be said about software aspects.Originality/value: We express the hope that the information scientists,including librarians,will be able to play their full role within the knowledge discovery,data mining and big data communities,leading to exciting developments,the reduction of scientific bottlenecks and really innovative applications.展开更多
It is remarkable that studying degenerate versions of polynomials from algebraic point of view is not limited to only special polynomials but can also be extended to their hybrid polynomials.Indeed for the first time,...It is remarkable that studying degenerate versions of polynomials from algebraic point of view is not limited to only special polynomials but can also be extended to their hybrid polynomials.Indeed for the first time,a closed determinant expression for the degenerate Appell polynomials is derived.The determinant forms for the degenerate Bernoulli and Euler polynomials are also investigated.A new class of the degenerate Hermite-Appell polynomials is investigated and some novel identities for these polynomials are established.The degenerate Hermite-Bernoulli and degenerate Hermite-Euler polynomials are considered as special cases of the degenerate Hermite-Appell polynomials.Further,by using Mathematica,we draw graphs of degenerate Hermite-Bernoulli polynomials for different values of indices.The zeros of these polynomials are also explored and their distribution is presented.展开更多
文摘Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
文摘For the first time, the isogeometric analysis(IGA) approach is used to model and analyze free and forced vibrations of doubly-curved magneto-electro-elastic(MEE) composite shallow shell resting on the visco-Pasternak foundation in a hygro-temperature environment. The doubly-curved MEE shallow shell types include spherical shallow shell, cylindrical shallow shell, saddle shallow shell, and elliptical shallow shell subjected to blast load are investigated. The Maxwell equation and electromagnetic boundary conditions are used to determine the vary of the electric and magnetic potentials. The MEE shallow shell's equations of motion are derived from Hamilton's principle and refined higher-order shear theory. Then, the IGA method is used to derive the laws of natural frequencies and dynamic responses of the shell under various boundary conditions. The accuracy of the model and method is verified through reliable numerical comparisons. Aside from this, the impact of the input parameters on the free and forced vibration of the doubly-curved MEE shallow shell is examined in detail. These results may be useful in the design and manufacture of military structures such as warships, fighter aircraft, drones and missiles.
基金the financial support from basal CONICYT project AFB-180004 of the Advanced Mining Technology Center (AMTC) - University of Chile。
文摘As underground excavations are getting deeper and field stresses increase, the behavior of intact rock blocks plays an increasingly important role in understanding and estimating the overall rock mass strength. To model the brittle behavior of intact rock blocks, the stress–strain curve is usually idealized considering a linear strength mobilization approach(cohesion-weakening-friction-strengthening, CWFS),however, it is well recognized that rock presents a nonlinear behavior in terms of the confining stress.This study extends the strength mobilization in brittle failure of rock using nonlinear criteria. To determine the model parameters, a standard statistical method that uses the complete laboratory stress–strain curves of the intact rock is employed. Several hypotheses of linear and nonlinear models are statistically compared for different types of rock and confining stress levels. Results demonstrate that the best approach to model the brittle failure of rock is to consider a nonlinear strength envelope, such as the Hoek-Brown criterion assuming a residual uniaxial compressive strength different from zero and a mi parameter that increases, both with simultaneous mobilization. This model helps to recreate highconfining conditions and a more realistic transition between peak and post-peak strength. The obtained parameters are discussed and compared with literature values to verify the validity and to develop guidelines for the estimation of parameters, providing an objective mobilization criterion. Finally, the nonlinear model was applied to a finite element code and extended to a tunnel scale in the brittle rock under high-stress conditions. A reasonable fit between the simulations and the in-situ overbreak measurements was found.
文摘Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section.
文摘Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their decomposition due to low resistance towards salinity and hence polymer composites have been explored to showcase their mechanical stability to withstand transverse and impact loads.To this end,the mechanical properties of S-Glass/carbon fiber reinforced polymer composite were experimentally investigated and higher specific strength and stiffness of the composite in comparison to many metallic materials used for submarine hull were reported.The obtained experimental values were used for the static and dynamic crash analysis of the bow,stern and foil through Finite Element Analysis(FEA);where depth of travel was varied from sea surface level of 0-7000 m.Submarine assembly was later developed with the optimum shape and thickness of each part.We also report the nonlinear crash analysis upon impact at velocity ranging from 3 to 21 m/s.Besides,kinetic energy,acceleration peak and internal energy in struck submarine revealed that travel depth 1750 m and 3500 m is recommendable,more particularly,crash safety factor of the submarine is found to be within limit when submarine encounters crash at 1750 m.
文摘Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust double hypergeometric function. The results presented in this article are based essentially upon the hypergeometric summation theorems of Kummer and Dixon.
基金supported by the National Natural Science Foundation of China(Grant No.:71173154)the National Social Science Foundation of China(Grant No.:08BZX076)the Social Science Foundation of Tongji University(Grant No.:3850219007)
文摘Purpose: This paper tries to understand the dynamics of scientific communication systems during crises by investigating as a case study the blogging activities that took place during the period of the 2011 earthquake and related events in Japan. Interactions between bloggers and registered users are studied quantitatively and qualitatively at Sciencenet.cn, an influential science-related blogosphere in China.Design/methodology/approach: The editors of Sciencenet.cn compiled a special issue of science blog articles under the title Analysis of the Japanese Earthquake. We developed a spider program and downloaded from this special issue the metadata about title, content,publishing time, total read count, reply count and recommendation count, and further collected information about bloggers and recommenders. We then sent a short message to the bloggers who wrote articles on these emergencies, asking for their educational and professional background.Findings: We found that knowledge reflected in the blog articles is strongly related to the educational and professional background of bloggers. Knowledge diffusion is facilitated by interactions, such as recommendations, comments and answers. Interactions via comments and recommendations are of an assortative nature: A blog article is more likelyto be commented on and recommended by those bloggers who write on the same or similar topics than by those writing on a different one. Registered users tend to give comments on articles dealing with the topic that they recommend, and vice versa.Interaction in the intersection of two or three topics is more intense than that within one topic. The impact of blog articles is also influenced by other factors, such as the reputation of the blogger and the type of information they contain.Implications and limitations: It is confirmed that studying blogs is a valid approach within informetric studies. Yet, we only studied one triple(earthquake, tsunami, nuclear disaster) event based on data originating from one Chinese blog website. More events should be studied.Originality/value: Informetric studies based on blogs are still relatively few. Using science blogs and combining comments on a triple event with the knowledge background of bloggers in China is even less common. As such this contribution enhances our knowledge on this new form of science communication activity.
文摘This paper proposes an efficient approach for four-dimensional (4D) parameter estimation of plane waves impinging on a 2-L shape array. The 4D parameters include amplitude, frequency and the two-dimensional (2D) direction of arrival, namely, azimuth and elevation angles. The proposed approach is based on memetic computation, in which the global optimizer, particle swarm optimization is hybridized with a rapid local search technique, pattern search. For this purpose, a new multi-objective fitness function is used. This fitness function is the combination of mean square error and the correlation between the normalized desired and estimated vectors. The proposed hybrid scheme is not only compared with individual performances of particle swarm optimization and pattern search, but also with the performance of the hybrid genetic algorithm and that of the traditional approach. A large number of Monte-Carlo simulations are carried out to validate the performance of the proposed scheme. It gives promising results in terms of estimation accuracy, convergence rate, proximity effect and robustness against noise.
基金funded by the publication grant scheme from the Publishers and Publications Board(BPP),Universitas Gadjah Mada,Indonesia.
文摘Background:This study aims to assess the effects of a forestation program and climate change on the annual and seasonal water balance of the Bogowonto catchment(597 km^(2))in Java,Indonesia.The catchment study is rare example in Indonesia where forestation has been applied at the catchment level.However,since the forestation program has been initiated,evaluations of the program only focus on the planting area targets,while the environmental success e.g.,impacts on the hydrological processes have never been assessed.This study used a calibrated Soil and Water Assessment Tool(SWAT)model to diagnose the isolated and combined effects of forestation and climate change on five water balance components,namely streamflow(Q),evapotranspiration(ET),surface runoff(Q_(s)),lateral flow(Q_(l))and base flow(Q_(b)).Results:The results show that from 2006 to 2019,forest cover has increased from 2.7% to 12.8% of the total area,while in the same period there was an increase in the mean annual and seasonal temperature,rainfall,and streamflow.Results of SWAT simulations show that changes in the mean annual and seasonal water balance under the forestation only scenario were relatively minor,while changes were more pronounced under the climate change only scenario.Based on the combined impacts scenario,it was observed that the effects of a larger forest area on the water balance were smaller than the effects of climate change.Conclusions:Although we found that forestation program has minor impacts compared to that of climate change on the hydrological processes in the Bogowonto catchment,seasonally,forestation activity has decreased the streamflow and surface runoff during the wet season which may reduce the risk of moderate floods.However,much attention should be paid to the way how forestation may result in severe drought events during the dry season.Finally,we urge the importance of accounting for the positive and negative effects in future forestation programs.
文摘This paper uses isogeometric analysis(IGA)based on higher-order shear deformation theory(HSDT)to study the dynamic response of bio-inspired helicoid laminated composite(B-iHLC)plates resting on Pasternak foundation(PF)excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness(k_(1))and shear stiffness(k_(2)).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions(BCs),and foundation stiffness on dynamic response of B-i HLC plates is carried out.
文摘In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated.
基金the support from the National Science Fund(NSF)MOSTI+1 种基金UKMUCSI
文摘The dispersion of magnetic nanoparticles in matrix is crucial to ensure optimum performance of the composite.The difficulty level of achieving good dispersion is further increase when a multi-phases of matrix is present.A pre-coating technique of magnetic nanoparticles with polypropylene using ball-mill prior to melt-blending process was employed to prepare a multi-phases thermoplastic natural rubber composite.The effect of filler loading(2 wt%-10 wt%) on morphology,structure,magnetic properties,thermal stability and dynamic mechanical properties of the composites were investigated.It was found that the NiZn ferrite nanoparticles act as nucleating agent to form beta isostatic polypropylene thermoplastic composites.The composites’ magnetic properties are directly dependent on the filler concentration.The dispersion of magnetic fillers in polymer matrix plays role in affecting the magnetic properties and thermal stability.The preference of filler to locate at amorphous phase has distorted the chain orientation of natural rubber and polypropylene.Hence,the polymorphism and crystallinity of the matrix varied as the filler loading increased,affecting the dynamic mechanical properties.It was found that 8 wt% NiZn nanocomposite exhibits highest E’ and tanδ,indicating the dynamic mechanical properties of NiZn nanocomposite are affected by β-phase degree.
基金the Ministry of Higher Education,Research and Innovation(MoHERI)Oman for their support of this research through TRC block funding Grant no.:BFP/RGP/EBR/22/378。
文摘While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization.
文摘This study is an investigation into cyberattacks on autonomous vessels,focusing on previous“real-world”cyberattacks and their consequences.The future of commercial and noncommercial shipping is moving toward autonomous vessels.Autonomous ships can provide significant financial and logistical benefits for shipping companies and their stakeholders.However,these vessels suffer from shortcomings concerning cybersecurity.Previous cyberattacks are investigated to understand how the command system of an autonomous ship is infiltrated,the consequences of an attack,and the shortfalls of the security of the vessel.This aim is achieved via a literature review concerning cyberattacks on autonomous vessels with a focus on sources indicating how the security systems of previous vessels were breached,the consequence of said cyberattacks,and their capability for recovery.Sources used include Web of Science,Scopus,Google Scholar,Mendeley,Zotero,SciFinder,broadsheet,and newspaper articles.The results of the literature review showed that autonomous vessels are significantly vulnerable to cyberattacks.Autonomous vessels were determined to have relatively easy-to-breach security systems.In most cases,the consequences of a cyberattack had a negative financial impact,a loss of cargo,and a potential breach of oceanic airspace,resulting in military action.The vessels analyzed were left“dead in the water”until they were recovered,and after a severe attack,the affected shipping company servers suffered potential weeklong incapacitation.This study also aims to fill the gaps in the transport industry and maritime market concerning the security of autonomous vessels and viable recovery procedures.
基金Project supported by the Higher Education Commission of Pakistan
文摘A method of modifying the architecture of fractional least mean square (FLMS) algorithm is presented to work with nonlinear time series prediction. Here we incorporate an adjustable gain parameter in the weight adaptation equation of the original FLMS algorithm and absorb the gamma function in the fractional step size parameter. This approach provides an interesting achievement in the performance of the filter in terms of handling the nonlinear problems with less computational burden by avoiding the evaluation of complex gamma function. We call this new algorithm as the modified fractional least mean square (MFLMS) algorithm. The predictive performance for the nonlinear Mackey glass chaotic time series is observed and evaluated using the classical LMS, FLMS, kernel LMS, and proposed MFLMS adaptive filters. The simulation results for the time series with and without noise confirm the superiority and improvement in the prediction capability of the proposed MFLMS predictor over its counterparts.
基金Project supported by the Higher Education Commission of Pakistan
文摘This paper presents an adaptive step-size modified fractional least mean square (AMFLMS) algorithm to deal with a nonlinear time series prediction. Here we incorporate adaptive gain parameters in the weight adaptation equation of the original MFLMS algorithm and also introduce a mechanism to adjust the order of the fractional derivative adaptively through a gradient-based approach. This approach permits an interesting achievement towards the performance of the filter in terms of handling nonlinear problems and it achieves less computational burden by avoiding the manual selection of adjustable parameters. We call this new algorithm the AMFLMS algorithm. The predictive performance for the nonlinear chaotic Mackey Glass and Lorenz time series was observed and evaluated using the classical LMS, Kernel LMS, MFLMS, and the AMFLMS filters. The simulation results for the Mackey glass time series, both without and with noise, confirm an improvement in terms of mean square error for the proposed algorithm. Its performance is also validated through the prediction of complex Lorenz series.
文摘Purpose: Big data offer a huge challenge. Their very existence leads to the contradiction that the more data we have the less accessible they become,as the particular piece of information one is searching for may be buried among terabytes of other data. In this contribution we discuss the origin of big data and point to three challenges when big data arise: Data storage,data processing and generating insights.Design/methodology/approach: Computer-related challenges can be expressed by the CAP theorem which states that it is only possible to simultaneously provide any two of the three following properties in distributed applications: Consistency(C),availability(A) and partition tolerance(P). As an aside we mention Amdahl's law and its application for scientific collaboration. We further discuss data mining in large databases and knowledge representation for handling the results of data mining exercises. We further offer a short informetric study of the field of big data,and point to the ethical dimension of the big data phenomenon.Findings: There still are serious problems to overcome before the field of big data can deliver on its promises.Implications and limitations: This contribution offers a personal view,focusing on the information science aspects,but much more can be said about software aspects.Originality/value: We express the hope that the information scientists,including librarians,will be able to play their full role within the knowledge discovery,data mining and big data communities,leading to exciting developments,the reduction of scientific bottlenecks and really innovative applications.
文摘It is remarkable that studying degenerate versions of polynomials from algebraic point of view is not limited to only special polynomials but can also be extended to their hybrid polynomials.Indeed for the first time,a closed determinant expression for the degenerate Appell polynomials is derived.The determinant forms for the degenerate Bernoulli and Euler polynomials are also investigated.A new class of the degenerate Hermite-Appell polynomials is investigated and some novel identities for these polynomials are established.The degenerate Hermite-Bernoulli and degenerate Hermite-Euler polynomials are considered as special cases of the degenerate Hermite-Appell polynomials.Further,by using Mathematica,we draw graphs of degenerate Hermite-Bernoulli polynomials for different values of indices.The zeros of these polynomials are also explored and their distribution is presented.