期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
iHNHC-RsFPN:基于多特征和特征金字塔网络预测人类非组蛋白巴豆酰化位点
1
作者 魏欣 胡思亲 +1 位作者 涂建 Muhammad Akmal Remli 《中国生物化学与分子生物学报》 北大核心 2025年第10期1541-1551,共11页
人类非组蛋白赖氨酸巴豆酰化位点在生物学活动中发挥至关重要的作用。然而传统湿实验耗时耗力,使得计算预测方法在近年来备受欢迎。尽管赖氨酸巴豆酰化位点具有重要的生物学意义,但针对人类非组蛋白的相关研究较少。本文构建了一个残差... 人类非组蛋白赖氨酸巴豆酰化位点在生物学活动中发挥至关重要的作用。然而传统湿实验耗时耗力,使得计算预测方法在近年来备受欢迎。尽管赖氨酸巴豆酰化位点具有重要的生物学意义,但针对人类非组蛋白的相关研究较少。本文构建了一个残差金字塔网络(residual neural network,RsFPN),开发名为iHNHC-RsFPN的集成深度学习预测器。首先,采用3种特征提取方法从样本中提取特征;其次,针对不同特征类型分别构建基于RsFPN训练的弱分类器;最后,整合3个弱分类器构建最终的强分类器。独立测试集结果显示,iHNHC-RsFPN的灵敏性(Sn=0.8580)、特异性(Sp=0.7463)、准确性(Acc=0.7798)和马修斯相关系数(MCC=0.5586)等4个指标均表现优异。研究结果表明,与现有的预测器相比,iHNHC-RsFPN在人类非组蛋白巴豆酰化位点的预测精度上有了显著改进。此外,本文还创建了一个用户友好的网络服务器(http://www.lzzzlab.top/ihnc/),它无需复杂的公式计算,可直接为相关专家学者提供预测服务,助力其进一步研究。 展开更多
关键词 人类非组蛋白 巴豆酰化位点 深度学习 特征提取 集成学习 残差金字塔网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部