期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic properties of low-density expandable polystyrene concrete materials
1
作者 Jue Han Hualin Fan 《Defence Technology(防务技术)》 2025年第1期94-108,共15页
Expanded polystyrene(EPS)concrete,known for its environmental friendliness,energy absorption capacity,and low impedance,has significant potential application in the fields of wave absorption and vibration reduction.Th... Expanded polystyrene(EPS)concrete,known for its environmental friendliness,energy absorption capacity,and low impedance,has significant potential application in the fields of wave absorption and vibration reduction.This study designed and prepared EPS concrete materials with four levels of density.Quasi-static uniaxial compression and Split Hopkinson Pressure Bar(SHPB)impact tests were conducted to obtain stress-strain curves,elastic moduli,failure modes,energy absorptions,and strain rate effects of the EPS concrete under quasi-static and dynamic loading conditions.The influences of density on various performance indicators were analyzed.By combining the Zhu-Wang-Tang(ZWT)constitutive model with a modified elastic-brittle model,a modified dynamic constitutive model was proposed.The accuracy of the model was validated by the experimental data.The results indicate that the addition of EPS particles enhances the ductility of the EPS concrete.The EPS concrete has significant strain rate effect,which gets stronger as density increases.The modifiedconstitutive model accurately characterizes the dynamic stress-strain curves of the EPS concrete. 展开更多
关键词 EPS concrete Impact behavior Constitutive model SHPB test
在线阅读 下载PDF
Mechanical behavior and deformation mechanism of ballast bed with various fouling materials 被引量:9
2
作者 ZHANG Zhi-hai XIAO Hong +2 位作者 WANG Meng LIU Guang-peng WANG Hao-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2857-2874,共18页
In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was develope... In order to study the interaction between various fouling particles and ballast,a multi-layer and multi-scale discrete element model(DEM)including the sleeper,ballast bed and the surface layer of subgrade was developed.Two typical fouling particles,the hard particles(sand)and soft ones(coal fines),are considered.A support stiffness test of the ballast bed under various fouling conditions was conducted to calibrate the microscopic parameters of the contact model.With the model,the influence of fouling particles on the mechanical behavior and deformation of the ballast bed was analyzed from macro and micro perspectives.The results show that the increase in the strength of the fouling particles enlarges the stiffness of the ballast bed.Hard particles increase the uniformity coefficient of the contact force bondγof ballast by 50.4%.Fouling particles increase the average stress in the subgrade,soft particles by 2 kPa and hard particles by 1 kPa.Hard particles can reduce the elasticity,plastic deformation and energy dissipation in the track structure.As the fouling particle changes from hard to soft,the proportion of the settlement in ballast bed increases to 40.5%and surface layer of swbgrade settlement decreases to 59.5%.Thus,the influence of fouling particles should be considered carefully in railway design and maintenance. 展开更多
关键词 ballasted track fouling material discrete element method contact force bond elastic-plastic deformation
在线阅读 下载PDF
Layered metastructure containing freely-designed local resonators for wave attenuation
3
作者 Yu Li Huguang He +3 位作者 Jiang Feng Hailong Chen Fengnian Jin Hualin Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr... Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap. 展开更多
关键词 Layered metastructure Local resonator Wave attenuation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部