H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplex...H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplexing (MIMO-OFDM) systems. Thus, an H-infinity estimator over time-invariant system models is pro- posed, which modifies the Krein space accordingly. In order to avoid the large matrix inversion and multiplication required in each OFDM symbol from different transmit antennas, expectation maximization (EM) is developed to reduce the high computational load. Joint estimation over multiple OFDM symbols is used to resist the high pilot overhead generated by the increasing number of transmit antennas. Finally, the performance of the proposed estimator is enhanced via an angle-domain process. Through performance analysis and simulation experiments, it is indicated that the pro- posed algorithm has a better mean square error (MSE) and bit error rate (BER) performance than the optimal least square (LS) estimator. Joint estimation over multiple OFDM symbols can not only reduce the pilot overhead but also promote the channel performance. What is more, an obvious improvement can be obtained by using the angle-domain filter.展开更多
基金supported by the National Natural Science Foundation of China(6087410860904035+2 种基金61004052)the Directive Plan of Science Research from the Bureau of Education of Hebei Province(Z2009105)the Funds of Central Colleges Basic Scientific Operating Expense(N100604004)
文摘H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplexing (MIMO-OFDM) systems. Thus, an H-infinity estimator over time-invariant system models is pro- posed, which modifies the Krein space accordingly. In order to avoid the large matrix inversion and multiplication required in each OFDM symbol from different transmit antennas, expectation maximization (EM) is developed to reduce the high computational load. Joint estimation over multiple OFDM symbols is used to resist the high pilot overhead generated by the increasing number of transmit antennas. Finally, the performance of the proposed estimator is enhanced via an angle-domain process. Through performance analysis and simulation experiments, it is indicated that the pro- posed algorithm has a better mean square error (MSE) and bit error rate (BER) performance than the optimal least square (LS) estimator. Joint estimation over multiple OFDM symbols can not only reduce the pilot overhead but also promote the channel performance. What is more, an obvious improvement can be obtained by using the angle-domain filter.