Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear...Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.展开更多
Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic ...Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic stress overlapping(SDSO) method was proposed to explain the impacts of static stress concentration and tremors induced by mining activities. The stress and deformation in surrounding rock of mining face were analyzed based on the field case study at 1303 workface in Zhaolou Coal Mine in China.The results illustrate that the surrounding rock of a workface could be divided into four different zones,i.e., residual stress zone, stress decrease zone, stress increase zone and original stress zone. The stress increase zone is prone to failure under the SDSO impact loading conditions and will provide elastic energy for inducing coal bump. Based on the numerical modelling results, the evolution of static stress in coal pillar as the size of gob increasing was studied, and the impact of dynamic stress was investigated through analyzing the characteristics of tremor activities. The numerical results demonstrate the peak value of vertical stress in coal pillar rises from about 30 MPa with mining distance 10 m to 52.6 MPa with mining distance 120 m, and the location of peak stress transfers to the inner zone of coal pillars as the workface moves forward. For the daily tremor activities, tremors with high energy released indicate high dynamic stress disturbance on the surrounding rock, therefore, the impact of dynamic stressing is more serious during workface extension period because the tremor frequency and average energy after workface extension are higher than those before the workface extension.展开更多
The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the foll...The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the following supports: SBA-15(2-D structure), TUD-1(3-D sponge-like structure) and fumed silica HS-5(3-D disordered structure). Effects of the supports regarding pore structures and pore properties, the PEI loading amount as well as the sorption temperature were examined. Furthermore, polyethylene glycol(PEG) was introduced as an additive into the sorbents and its effect was investigated at different PEI loadings and sorption temperatures. The results suggest that the pore properties of MBS(after PEI loading) play a more important role in the COsorption capacity, rather than those of the supports alone.MBS with 3D pore structure exhibits higher COsorption capacity and amine efficiency than those with 2D-structured support. Among the sorbents studied, fumed silica(HS-5) based MBS showed the highest COsorption capacity in the temperature range of 30-95 °C, probably due to its unique interstitial pores formed by the aggregation of polymer-loaded SiOparticles. It was found that the temperature dependence is directly related to the PEI surface coverage layers. The more PEI surface coverage layers, the higher diffusion barrier for COand the stronger temperature dependence of COcapacity. 3D MBS exceeds 2D MBS at the same PEI coverage layers due to lower diffusion barrier. Adding PEG can significantly enhance the COsorption capacity and improve amine efficiency of all MBS, most likely by alleviating the diffusion barrier within PEI bulk layers through the inter-molecular interaction between PEI and PEG.展开更多
SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsor...SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species.展开更多
Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene sele...Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene selectivity (45%) was similar to ZSM-5-OH synthesized via a hydroxide route. However, ZSM- 5-F showed much longer lifetime (305 h) compared with ZSM-5-OH (157 h) in spite of similar crystal size and aluminum content. Characterization by NH3-TPD. Py-IR, OH-IR, SEM, TG-DTA, XRD and 1H MAS NMR techniques indicated that the enhanced catalytic performance of ZSM-S-F is attributed to the fewer structural defects in the form of internal silanol groups and silanol nests.展开更多
Gas diffusion in the shale matrix has a dominant effect on late-stage production from shale gas reservoirs.However,adequate research on the mechanisms and contributions of gas diffusion for varied pore size population...Gas diffusion in the shale matrix has a dominant effect on late-stage production from shale gas reservoirs.However,adequate research on the mechanisms and contributions of gas diffusion for varied pore size populations in shale matrix under recreated in situ stress is lacking.We report gas-diffusion measurements under constant in situ stress but variable gas pressures for contrasting non-adsorbent(helium(He))and adsorbed(methane(CH_(4)))gases to investigate the impact of effective stress on the evolution of dominant mechanisms of diffusion.An intact sample replicates true pore-network topology and diffusion paths.An integrated diffusion model is proposed that combines the effects of slip flow,Knudsen flow,and surface diffusion to constrain the evolution of these flow regimes and their respective contributions to the observational data.Finally,a probability density function(PDF)is employed to separate the gas content distributions of macropores and micropores from the total gas content and to investigate gas contributions in various pores.The results reveal that the diffusion coefficients of both He and CH_(4) in macropores and micropores increase with gas pressure but decrease with increasing effective stress.The diffusion coefficients of He and CH_(4) are different in macropores but remain nearly the same in micropores.The diffusion coefficients of slip flow and surface diffusion increase with decreasing effective stress except for CH_(4) diffusion in the micropores,while the evolution of Knudsen diffusion shows the opposite trend.Slip flow plays a dominant role in He and CH_(4) diffusion within macropores(pore size 45 nm).Knudsen diffusion gradually becomes significant for He diffusion in the micropores(pore size 4 nm),conversely,for CH_(4) diffusion in the micropores,surface diffusion becomes significant.Related to gas production from reservoirs,the contributions of the micropores will increase gradually with the duration of gas recovery,indicating the significant role of gas diffusion in micropores to steady supply during latestage production.展开更多
The SAPO-34 catalyst was fine-tuned with zinc cations through a straightforward template-assisted ion incorporation (TH) process, without the necessary template pre-removal and the preparation of NH4- SAPO-34 intermed...The SAPO-34 catalyst was fine-tuned with zinc cations through a straightforward template-assisted ion incorporation (TH) process, without the necessary template pre-removal and the preparation of NH4- SAPO-34 intermediate, which is more facile, efficient and cost-effective than the conventional ion exchange process. The template-assisted zinc cations incorporated SAPO-34 catalysts were characterized by XRD, XRF, N2 adsorption-desorption, XPS, SEM, EDX,NMR, respectively. Enhanced selectivity to ethylene and ratio of ethylene to propylene in MTO reaction are observed over the zinc cations modified SAPO-34 catalysts, due to the facilitated formation of lower methylbenzenes that favour the ethylene gen eration, as well as the increased diffusion hindrance originated from the zinc cations incorporation and the facil让ated generation of aromatics compound.展开更多
LHD's are expensive vehicles; therefore, it is important to accurately define the financial consequences associated with the investment of purchasing the mining equipment. This study concentrates on longterm incre...LHD's are expensive vehicles; therefore, it is important to accurately define the financial consequences associated with the investment of purchasing the mining equipment. This study concentrates on longterm incremental and sensitivity analysis to determine whether it is feasible to incorporate current battery technology into these machines. When revenue was taken into account, decreasing the amount of haulage in battery operated equipment by 5% or 200 kg per h amounts to a $4.0 × 10~4 loss of profit per year. On average it was found that using battery operated equipment generated $9.5 × 10~4 more in income annually, reducing the payback period from seven to two years to pay back the additional $1.0 × 10~5 investment of buying battery powered equipment over cheaper diesel equipment. Due to the estimated 5% increase in capital, it was observed that electric vehicles must possess a lifetime that is a minimum of one year longer than that of diesel equipment.展开更多
基金funded by the National Natural Science Foundation of China(Nos.42320104003 and 42107163)the Funda mental Research Funds for the Central Universities.Derek Elsworth acknowledges support from the G.Albert Shoemaker endowment.
文摘Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults.
基金financially supported by National Science and Technology Key Project Fund of China (Nos.2016YFC0801401 and 2016YFC0600708)Fundamental Research Funds for the Central Universities of China (No.2009QM01)Yue Qi Distinguished Scholar Project,China University of Mining & Technology,Beijing,China
文摘Irregular shape workface would result in the presence of coal pillar, which leads to high stress concentration and possibly induces coal bumps. In order to study the coal bump mechanism of pillars, static and dynamic stress overlapping(SDSO) method was proposed to explain the impacts of static stress concentration and tremors induced by mining activities. The stress and deformation in surrounding rock of mining face were analyzed based on the field case study at 1303 workface in Zhaolou Coal Mine in China.The results illustrate that the surrounding rock of a workface could be divided into four different zones,i.e., residual stress zone, stress decrease zone, stress increase zone and original stress zone. The stress increase zone is prone to failure under the SDSO impact loading conditions and will provide elastic energy for inducing coal bump. Based on the numerical modelling results, the evolution of static stress in coal pillar as the size of gob increasing was studied, and the impact of dynamic stress was investigated through analyzing the characteristics of tremor activities. The numerical results demonstrate the peak value of vertical stress in coal pillar rises from about 30 MPa with mining distance 10 m to 52.6 MPa with mining distance 120 m, and the location of peak stress transfers to the inner zone of coal pillars as the workface moves forward. For the daily tremor activities, tremors with high energy released indicate high dynamic stress disturbance on the surrounding rock, therefore, the impact of dynamic stressing is more serious during workface extension period because the tremor frequency and average energy after workface extension are higher than those before the workface extension.
基金the support of this work at Penn State by the U.S.Department of Energy,National Energy Technology Laboratorythe financial support by the China Scholarship Council,the Natural Science Foundation of China(No.51176034)the Open Fund of Key Laboratory of Coal-Based CO2 Capture and Geological Storage of Jiangsu Province(2016A05)
文摘The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the following supports: SBA-15(2-D structure), TUD-1(3-D sponge-like structure) and fumed silica HS-5(3-D disordered structure). Effects of the supports regarding pore structures and pore properties, the PEI loading amount as well as the sorption temperature were examined. Furthermore, polyethylene glycol(PEG) was introduced as an additive into the sorbents and its effect was investigated at different PEI loadings and sorption temperatures. The results suggest that the pore properties of MBS(after PEI loading) play a more important role in the COsorption capacity, rather than those of the supports alone.MBS with 3D pore structure exhibits higher COsorption capacity and amine efficiency than those with 2D-structured support. Among the sorbents studied, fumed silica(HS-5) based MBS showed the highest COsorption capacity in the temperature range of 30-95 °C, probably due to its unique interstitial pores formed by the aggregation of polymer-loaded SiOparticles. It was found that the temperature dependence is directly related to the PEI surface coverage layers. The more PEI surface coverage layers, the higher diffusion barrier for COand the stronger temperature dependence of COcapacity. 3D MBS exceeds 2D MBS at the same PEI coverage layers due to lower diffusion barrier. Adding PEG can significantly enhance the COsorption capacity and improve amine efficiency of all MBS, most likely by alleviating the diffusion barrier within PEI bulk layers through the inter-molecular interaction between PEI and PEG.
基金supported by NSFC(21376261,21173270,21177160)Beijing Natural Science Foundation(2142027)+1 种基金863 Program of China(2013AA065302)the Doctor Select Foundation(20130007110007)
文摘SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species.
文摘Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene selectivity (45%) was similar to ZSM-5-OH synthesized via a hydroxide route. However, ZSM- 5-F showed much longer lifetime (305 h) compared with ZSM-5-OH (157 h) in spite of similar crystal size and aluminum content. Characterization by NH3-TPD. Py-IR, OH-IR, SEM, TG-DTA, XRD and 1H MAS NMR techniques indicated that the enhanced catalytic performance of ZSM-S-F is attributed to the fewer structural defects in the form of internal silanol groups and silanol nests.
基金Open Foundation of National Energy shale gas R&D(experiment)center(2022-KFKT-12)the research delivered partial results under the support of the National Key R&D Program of China(2021YFC2902101)+2 种基金National Natural Science Foundation of China(12002081)the National Natural Science Foundation of China(Grant No.12002081)the 111 Project(B17009).
文摘Gas diffusion in the shale matrix has a dominant effect on late-stage production from shale gas reservoirs.However,adequate research on the mechanisms and contributions of gas diffusion for varied pore size populations in shale matrix under recreated in situ stress is lacking.We report gas-diffusion measurements under constant in situ stress but variable gas pressures for contrasting non-adsorbent(helium(He))and adsorbed(methane(CH_(4)))gases to investigate the impact of effective stress on the evolution of dominant mechanisms of diffusion.An intact sample replicates true pore-network topology and diffusion paths.An integrated diffusion model is proposed that combines the effects of slip flow,Knudsen flow,and surface diffusion to constrain the evolution of these flow regimes and their respective contributions to the observational data.Finally,a probability density function(PDF)is employed to separate the gas content distributions of macropores and micropores from the total gas content and to investigate gas contributions in various pores.The results reveal that the diffusion coefficients of both He and CH_(4) in macropores and micropores increase with gas pressure but decrease with increasing effective stress.The diffusion coefficients of He and CH_(4) are different in macropores but remain nearly the same in micropores.The diffusion coefficients of slip flow and surface diffusion increase with decreasing effective stress except for CH_(4) diffusion in the micropores,while the evolution of Knudsen diffusion shows the opposite trend.Slip flow plays a dominant role in He and CH_(4) diffusion within macropores(pore size 45 nm).Knudsen diffusion gradually becomes significant for He diffusion in the micropores(pore size 4 nm),conversely,for CH_(4) diffusion in the micropores,surface diffusion becomes significant.Related to gas production from reservoirs,the contributions of the micropores will increase gradually with the duration of gas recovery,indicating the significant role of gas diffusion in micropores to steady supply during latestage production.
基金the National Natural Science Foundation of China(21603223,91745109,91545104,21473182,91334205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2014165)for financial support
文摘The SAPO-34 catalyst was fine-tuned with zinc cations through a straightforward template-assisted ion incorporation (TH) process, without the necessary template pre-removal and the preparation of NH4- SAPO-34 intermediate, which is more facile, efficient and cost-effective than the conventional ion exchange process. The template-assisted zinc cations incorporated SAPO-34 catalysts were characterized by XRD, XRF, N2 adsorption-desorption, XPS, SEM, EDX,NMR, respectively. Enhanced selectivity to ethylene and ratio of ethylene to propylene in MTO reaction are observed over the zinc cations modified SAPO-34 catalysts, due to the facilitated formation of lower methylbenzenes that favour the ethylene gen eration, as well as the increased diffusion hindrance originated from the zinc cations incorporation and the facil让ated generation of aromatics compound.
文摘LHD's are expensive vehicles; therefore, it is important to accurately define the financial consequences associated with the investment of purchasing the mining equipment. This study concentrates on longterm incremental and sensitivity analysis to determine whether it is feasible to incorporate current battery technology into these machines. When revenue was taken into account, decreasing the amount of haulage in battery operated equipment by 5% or 200 kg per h amounts to a $4.0 × 10~4 loss of profit per year. On average it was found that using battery operated equipment generated $9.5 × 10~4 more in income annually, reducing the payback period from seven to two years to pay back the additional $1.0 × 10~5 investment of buying battery powered equipment over cheaper diesel equipment. Due to the estimated 5% increase in capital, it was observed that electric vehicles must possess a lifetime that is a minimum of one year longer than that of diesel equipment.