The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of ...The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.展开更多
In the background of signal detection for high frequency (I/F) radar, the sea clutter is quite significant and can mask some weak target signals. A new clutter rejection method named “nonlinear projection” is give...In the background of signal detection for high frequency (I/F) radar, the sea clutter is quite significant and can mask some weak target signals. A new clutter rejection method named “nonlinear projection” is given to improve the SNR of the target. This approach is based on the recent observation that HF sea clutter may be modeled as a nonlinear deterministic dynamical system. After approximating the multidimensional reconstruction of the clutter by a low-dimensional attractor, projections onto this attractor can separate the clutter from other components. Real sea clutter, simulated target data and real target data are used to show that a nonlinear clutter rejection method is a promising technique to suppress sea clutter and enhances target detection.展开更多
MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with...MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.展开更多
文摘The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.
文摘In the background of signal detection for high frequency (I/F) radar, the sea clutter is quite significant and can mask some weak target signals. A new clutter rejection method named “nonlinear projection” is given to improve the SNR of the target. This approach is based on the recent observation that HF sea clutter may be modeled as a nonlinear deterministic dynamical system. After approximating the multidimensional reconstruction of the clutter by a low-dimensional attractor, projections onto this attractor can separate the clutter from other components. Real sea clutter, simulated target data and real target data are used to show that a nonlinear clutter rejection method is a promising technique to suppress sea clutter and enhances target detection.
文摘MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.