Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground s...Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.展开更多
Based on a general model of Brownian motors, the Onsager coefficients and generalized efficiency of a thermal Brownian motor are calculated analytically. It is found that the Onsager reciprocity relation holds and the...Based on a general model of Brownian motors, the Onsager coefficients and generalized efficiency of a thermal Brownian motor are calculated analytically. It is found that the Onsager reciprocity relation holds and the Onsager coefficients are not affected by the kinetic energy change due to the particle's motion. Only when the heat leak in the system is negligible can the determinant of the Onsager matrix vanish. Moreover, the influence of the main parameters characterizing the model on the generalized efficiency of the Brownian motor is discussed in detail. The characteristic curves of the generalized efficiency varying with these parameters are presented, and the maximum generalized efficiency and the corresponding optimum parameters are determined. The results obtained here are of general significance. They are used to analyze the performance characteristics of the Brownian motors operating in the three interesting cases with zero heat leak, zero average drift velocity or a linear response relation, so that some important conclusions in current references are directly included in some limit cases of the present paper.展开更多
This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose-Einstein condensate. Based on the divergence-free analytical solutions for ground-state wa...This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose-Einstein condensate. Based on the divergence-free analytical solutions for ground-state wavefunction of the condensate and eigenvalues and eigenfunctions for thermally excited quasiparticles, obtained beyond Thomas-Fermi approximation, this paper calculates the coupling matrix elements describing the interaction between the collective mode and the quasiparticles. With these analytical results this paper evaluates the Landau damping rate of a monopole mode in a spherical trap and discusses its dependence on temperature, particle number and trapping frequency of the system.展开更多
The thermostatistic properties of a q-generalized Fermi system trapped in a generic power-law potential are studied, based on the generalized statistic distribution derived from the Tsallis entropy. The total number o...The thermostatistic properties of a q-generalized Fermi system trapped in a generic power-law potential are studied, based on the generalized statistic distribution derived from the Tsallis entropy. The total number of particles, the total energy, and the heat capacity at constant volume of the system are derived. The thermostatistic characteristics of the system are discussed in detail. It is found that the thermostatistic properties of such a system depend closely on parameter q, dimensional number of the space, kinetic characteristics of particles and shapes of the external potential, and the external potential has a great influence on the thermostatistie properties of the system. Moreover, it is shown that the results obtained here are very general and can be used to unify the description of the nonextensive and extensive thermostatistie properties of a class of Fermi systems trapped in different external potentials so that the important conclusions of many typical Fermi systems in the literature may be directly derived from the present paper.展开更多
We periodically modulate the lattice trapping potential of a ^(87)Sr optical clock to Floquet engineer the clock transition.In the context of atomic gases in lattices,Floquet engineering has been used to shape the dis...We periodically modulate the lattice trapping potential of a ^(87)Sr optical clock to Floquet engineer the clock transition.In the context of atomic gases in lattices,Floquet engineering has been used to shape the dispersion and topology of Bloch quasi-energy bands.Differently from these previous works manipulating the external(spatial)quasi-energies,we target the internal atomic degrees of freedom.We shape Floquet spin quasi-energies and measure their resonance profiles with Rabi spectroscopy.We provide the spectroscopic sensitivity of each band by measuring the Fisher information and show that this is not depleted by the Floquet dynamical modulation.The demonstration that the internal degrees of freedom can be selectively engineered by manipulating the external degrees of freedom inaugurates a novel device with potential applications in metrology,sensing and quantum simulations.展开更多
We perform a systematic calculation of the equation of state of asymmetric nuclear matter at finite temperature within the framework of the Brueckner-Hartree-Fock approach with a microscopic three-body force. When app...We perform a systematic calculation of the equation of state of asymmetric nuclear matter at finite temperature within the framework of the Brueckner-Hartree-Fock approach with a microscopic three-body force. When applying it to the study of hot kaon condensed matter, we find that the thermal effect is more profound in comparison with normal matter, in particular around the threshold density. Also, the increase of temperature makes the equation of state slightly stiffer through suppression of kaon condensation.展开更多
We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves. The different orientations of th...We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves. The different orientations of the rotational axes between the outer part of a neutrino-cooled disk and a black hole result in precessions of the central black hole and the inner part of the disk. Hence, the jet arising from the neutrino annihilation above the inner disk is driven to precession. We find that the period of precession is positively correlated with the mass as well as the spin of a black hole.展开更多
This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystall...This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystallographic directions, and to explore the preferential growth orientation of Au nanowires. The main focus of this work is the size effects on their surface characteristics. Using the common neighbour analysis, this paper deduces that surface region approximately consists of two layer atoms. Further, it extracts the elastic modulus of surface, and calculate surface energy of nanowire. The results show that for all three directions the Young's modulus of nanowire increases as the diameter increases. Similar trend has been observed for the Young's modulus of surface. However, the atomic average potential energy of nanowire shows an opposite change. Both the potential and surface energy of [110] nanowire are the lowest among all three orlentational nanowires, which helps to explain why Au nanowires possess a [110] preferred orientation during the experimental growth proceeds.展开更多
Based on first-principles calculations, we show that very high-density periodic arrays of Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) and Cu(100) surf...Based on first-principles calculations, we show that very high-density periodic arrays of Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) and Cu(100) surfaces, with the quadrangle configurations more stable than the tetrahedron ones. The strong covalent bonding between atoms within the Nb4 clusters contributes to the stability of Nb4 adsorptions on the Cu surfaces. The energy barriers for the tetrahedron to the quadrangle-Nb4 on Cu(111) and (100) are around 1.21 eV and 0.94 eV/cluster, respectively. The stable adsorption of high-density Nb4 on these surfaces should have important applications.展开更多
This paper uses a molecular static approach with a many-body potential to investigate the surface energetic and bonding characteristics of tetrahexahedral platinum nanocrystals enclosed by high-index facets such as {2...This paper uses a molecular static approach with a many-body potential to investigate the surface energetic and bonding characteristics of tetrahexahedral platinum nanocrystals enclosed by high-index facets such as {210}, {310}, {410}, {520} and {730}. It mainly focuses on the effect of crystal size and surface Miller index on these characteristics. The results show that the surface energy and dangling bond density increase with decreasing diameter of tetrahexahedral nanocrystals and generally show an order of {210} 〉{730}〉 {520} 〉 {310} 〉 {410}. However, this order is not valid at crystal sizes below 7 nm or so. The results of corresponding surfaces are also presented for comparison.展开更多
We investigate the dependence of elliptic flows v2 on transverse momentum PT for charged hadrons produced in nucleus-nucleus collisions at high energy by using a multi-source thermal model,where the contribution of so...We investigate the dependence of elliptic flows v2 on transverse momentum PT for charged hadrons produced in nucleus-nucleus collisions at high energy by using a multi-source thermal model,where the contribution of source interactions is considered.Our calculated results are approximately in agrcement with the experimental data over a wider PT range from the PHENIX and ALICE collaborations.It is found that the expansion factor increases linearly with the impact parameter from most central (0-5%) to mid-peripheral (35-40%) collisions.展开更多
The ground bands and β-bands of four nuclei 230,232Th and 232,234U in the actinide region are investigated by introducing a collective Do pair into the projected shell model.We discuss the collectivity of the Do pair...The ground bands and β-bands of four nuclei 230,232Th and 232,234U in the actinide region are investigated by introducing a collective Do pair into the projected shell model.We discuss the collectivity of the Do pair.The calculated energy schemes agree well with experimental data,and so do the E2 transition rates.展开更多
The Metropolis Monte Carlo algorithm is applied to a classical O(2)model on nice tree and Bethe lattice.Finite-size scaling theory is applied to estimate the critical temperature.The results show that the continuous s...The Metropolis Monte Carlo algorithm is applied to a classical O(2)model on nice tree and Bethe lattice.Finite-size scaling theory is applied to estimate the critical temperature.The results show that the continuous symmetry may not be spontaneously broken even if d_(f)≥d_(w)+1 where df and dw are the fractal dimension and the dimension of the random walk on the structure respectively or even if the random walk on the structure is transient.展开更多
We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime.A cloud of cesium atoms is trapped in a magneto-optical trap positi...We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime.A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5mm above the micro-cavity center.The atoms fall down freely in gravitation after shutting off the magnetooptical trap and pass through the cavity.The cavity transmission is strongly affected by the atoms in the cavity,which enables the micro-cavity to sense the atoms individually.We detect the single atom transits either in the resonance or various detunings.The single atom vacuum-Rabi splitting is directly measured to beΩ=2π×23.9 MHz.The average duration of atom-cavity coupling of about 110μs is obtained according to the probability distribution of the atom transits.展开更多
We introduce a simple model based on the Moran process with network dynamics. Using pair approximation, the cooperation frequencies at equilibrium states are deduced for general interactions. Three usual social dilemm...We introduce a simple model based on the Moran process with network dynamics. Using pair approximation, the cooperation frequencies at equilibrium states are deduced for general interactions. Three usual social dilemmas are discussed in the framework of our model. It is found that they all have a phase transition at the same value of cost-to-benefit ratio. For the prisoner's dilemma game, notably it is exactly the simple rule reported in the literature [Nature 441 (2006) 502]. In our model, the simple rule results from the parent-offspring link. Thus the basic mechanism for cooperation enhancement in network reciprocity is in line with the Hamilton rule of kin selection. Our simulations verify the analysis obtained from pair approximation.展开更多
We propose a new generalized Su–Schrieffer–Heeger model with hierarchical long-range hopping based on a onedimensional tetratomic chain. The properties of the topological states and phase transition, which depend on...We propose a new generalized Su–Schrieffer–Heeger model with hierarchical long-range hopping based on a onedimensional tetratomic chain. The properties of the topological states and phase transition, which depend on the cointeraction of the intracell and intercell hoppings, are investigated using the phase diagram of the winding number. It is shown that topological states with large positive/negative winding numbers can readily be generated in this system. The properties of the topological states can be verified by the ring-type structures in the trajectory diagram of the complex plane. The topological phase transition is strongly related to the opening(closure) of an energy bandgap at the center(boundaries) of the Brillouin zone. Finally, the non-zero-energy edge states at the ends of the finite system are revealed and matched with the bulk–boundary correspondence.展开更多
Adsorption of ordered (2 × 2) arrays of Nb4 clusters on the insulating surface of NaCI(100) is studied by the first-principles calculations within the density functional theory. The calculations on the relaxe...Adsorption of ordered (2 × 2) arrays of Nb4 clusters on the insulating surface of NaCI(100) is studied by the first-principles calculations within the density functional theory. The calculations on the relaxed geometries and cohesive energies show that both the tetrahedron and quadrangle-Nb4 can be stably adsorbed on this substrate, which may have important applications. The adsorption of quadrangle-Nb4 on the NaCl(100) surface is more stable than that of tetrahedron-Nb4. Both the Nb4 clusters studied and a single Nb atom prefer the top site of the Cl atom in the NaCl(100) surface. Electronic structure analysis suggests that the interactions between the Nb4 clusters and the substrate are weak.展开更多
We study the entanglement between the internal(coin)and the external(position)degrees of freedom in the dynamic and the static deterministic aperiodic quantum walks(QWs).For the dynamic(static)aperiodic QWs,the coin d...We study the entanglement between the internal(coin)and the external(position)degrees of freedom in the dynamic and the static deterministic aperiodic quantum walks(QWs).For the dynamic(static)aperiodic QWs,the coin depends on the time(position)and takes two coins C(α)and C(β)arranged in the two classes of generalized Fibonacci(GF)and the Thue–Morse(TM)sequences.We found that for the dynamic QWs,the entanglement of three kinds of the aperiodic QWs are close to the maximal value,which are all much larger than that of the homogeneous QWs.Further,the first class of GF(1st GF)QWs can achieve the maximum entangled state,which is similar to that of the dynamic disordered QWs.And the entanglement of 1st GF QWs is greater than that of the TM QWs,being followed closely by the entanglement of the second class of GF(2nd GF)QWs.For the static QWs,the entanglement of three kinds of the aperiodic QWs are also close to the maximal value and 1st GF QWs can achieve the maximum entangled state.The entanglement of the TM QWs is between1st GF QWs and 2nd GF QWs.However,the entanglement of the static disordered QWs is less than that of three kinds of the aperiodic QWs.This is different from those of the dynamic QWs.From these results,we can conclude that the dynamic and static 1st GF QWs can also be considered as maximal entanglement generators.展开更多
The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Differe...The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Different from the case without the DM interaction, the excitation spectra ek of this model are not symmetrical in the momentum space and are not always positive. As a result, besides the ferromagnetic (FM) and the paramagnetic (PM) phases, a gapless chiral phase is induced. In the chiral phase, the von Neumann entropy is proportional to log2 L (L is the length of a subchain) with the coefficient A ~ 1/3, which is the same as that of the XY chain in a transverse field without the DM interaction for 7 = 0 and 0 〈 h 〈 1. And in the vicinity of the critical point between the chiral phase and the FM (or PM) phase, the behaviors of the nearest- neighbor concurrence and its derivative are like those for the anisotropy transition.展开更多
We present a kind of modified checker board lattice and investigate the random uualk on the frac tai.The spectral dimension is determined via renormalization procedures and the inverse matrix method is used to renorma...We present a kind of modified checker board lattice and investigate the random uualk on the frac tai.The spectral dimension is determined via renormalization procedures and the inverse matrix method is used to renormalize the master equation describing the random walk.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11174026)。
文摘Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.
基金supported by the National Natural Science Foundation of China (Grant No 10575084)
文摘Based on a general model of Brownian motors, the Onsager coefficients and generalized efficiency of a thermal Brownian motor are calculated analytically. It is found that the Onsager reciprocity relation holds and the Onsager coefficients are not affected by the kinetic energy change due to the particle's motion. Only when the heat leak in the system is negligible can the determinant of the Onsager matrix vanish. Moreover, the influence of the main parameters characterizing the model on the generalized efficiency of the Brownian motor is discussed in detail. The characteristic curves of the generalized efficiency varying with these parameters are presented, and the maximum generalized efficiency and the corresponding optimum parameters are determined. The results obtained here are of general significance. They are used to analyze the performance characteristics of the Brownian motors operating in the three interesting cases with zero heat leak, zero average drift velocity or a linear response relation, so that some important conclusions in current references are directly included in some limit cases of the present paper.
基金Project supported by the National Nature Science Foundation of China (Grant Nos 90403008 and 10434060), and State Key Development Program for Basic Research of China (Grant No 2005CB724508).
文摘This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose-Einstein condensate. Based on the divergence-free analytical solutions for ground-state wavefunction of the condensate and eigenvalues and eigenfunctions for thermally excited quasiparticles, obtained beyond Thomas-Fermi approximation, this paper calculates the coupling matrix elements describing the interaction between the collective mode and the quasiparticles. With these analytical results this paper evaluates the Landau damping rate of a monopole mode in a spherical trap and discusses its dependence on temperature, particle number and trapping frequency of the system.
基金Project supported by the Research Foundation of Ministry of Education, China (Grant No 20050384005)the Science Research Fund, Huaqiao University, China (Grant No 07BS105)
文摘The thermostatistic properties of a q-generalized Fermi system trapped in a generic power-law potential are studied, based on the generalized statistic distribution derived from the Tsallis entropy. The total number of particles, the total energy, and the heat capacity at constant volume of the system are derived. The thermostatistic characteristics of the system are discussed in detail. It is found that the thermostatistic properties of such a system depend closely on parameter q, dimensional number of the space, kinetic characteristics of particles and shapes of the external potential, and the external potential has a great influence on the thermostatistie properties of the system. Moreover, it is shown that the results obtained here are very general and can be used to unify the description of the nonextensive and extensive thermostatistie properties of a class of Fermi systems trapped in different external potentials so that the important conclusions of many typical Fermi systems in the literature may be directly derived from the present paper.
基金Supported by the National Natural Science Foundation of China(Grant Nos.61775220,11804034,11874094,12047564,11874247,11874246)the Key Research Project of Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-JSC004)+5 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB21030100 and XDB35010202)the Special Foundation for Theoretical Physics Research Program of China(Grant No.11647165)the Fundamental Research Funds for the Central Universities(Grant No.2020CDJQY-Z003)the National Key R&D Program of China(Grant No.2017YFA0304501),the 111 Project(Grant No.D18001)the Hundred Talent Program of the Shanxi Province(2018)the EMPIR-USOQS,EMPIR Project co-funded by the European Unions Horizon2020 Research and Innovation Programme and the EMPIR Participating States.
文摘We periodically modulate the lattice trapping potential of a ^(87)Sr optical clock to Floquet engineer the clock transition.In the context of atomic gases in lattices,Floquet engineering has been used to shape the dispersion and topology of Bloch quasi-energy bands.Differently from these previous works manipulating the external(spatial)quasi-energies,we target the internal atomic degrees of freedom.We shape Floquet spin quasi-energies and measure their resonance profiles with Rabi spectroscopy.We provide the spectroscopic sensitivity of each band by measuring the Fisher information and show that this is not depleted by the Floquet dynamical modulation.The demonstration that the internal degrees of freedom can be selectively engineered by manipulating the external degrees of freedom inaugurates a novel device with potential applications in metrology,sensing and quantum simulations.
基金Supported by the National Natural Science Foundation of China under Grant No 10575119, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX3-SYW-N2, and the Asia-Europe Link project (CN/ASIA-LINK/008(94791)) of the European Commission.
文摘We perform a systematic calculation of the equation of state of asymmetric nuclear matter at finite temperature within the framework of the Brueckner-Hartree-Fock approach with a microscopic three-body force. When applying it to the study of hot kaon condensed matter, we find that the thermal effect is more profound in comparison with normal matter, in particular around the threshold density. Also, the increase of temperature makes the equation of state slightly stiffer through suppression of kaon condensation.
基金Project supported by the National Basic Research Program of China (Grant No. 2009CB824800)the National Natural Science Foundation of China (Grant Nos. 10833002,11003016,11073015,and 11103015)the Natural Science Foundation of Fujian Province,China (Grant No. 2010J01017)
文摘We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves. The different orientations of the rotational axes between the outer part of a neutrino-cooled disk and a black hole result in precessions of the central black hole and the inner part of the disk. Hence, the jet arising from the neutrino annihilation above the inner disk is driven to precession. We find that the period of precession is positively correlated with the mass as well as the spin of a black hole.
基金support by the National 973 Project of China (Grant No 2006CB605102)the National Natural Science Foundation of China (Grant No 10702056)Program for New Century Excellent Talents in Fujian Province University,China (NCETFJ)
文摘This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystallographic directions, and to explore the preferential growth orientation of Au nanowires. The main focus of this work is the size effects on their surface characteristics. Using the common neighbour analysis, this paper deduces that surface region approximately consists of two layer atoms. Further, it extracts the elastic modulus of surface, and calculate surface energy of nanowire. The results show that for all three directions the Young's modulus of nanowire increases as the diameter increases. Similar trend has been observed for the Young's modulus of surface. However, the atomic average potential energy of nanowire shows an opposite change. Both the potential and surface energy of [110] nanowire are the lowest among all three orlentational nanowires, which helps to explain why Au nanowires possess a [110] preferred orientation during the experimental growth proceeds.
基金Supported by the National Natural Science Foundation of China under Grant No 10374076.
文摘Based on first-principles calculations, we show that very high-density periodic arrays of Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) and Cu(100) surfaces, with the quadrangle configurations more stable than the tetrahedron ones. The strong covalent bonding between atoms within the Nb4 clusters contributes to the stability of Nb4 adsorptions on the Cu surfaces. The energy barriers for the tetrahedron to the quadrangle-Nb4 on Cu(111) and (100) are around 1.21 eV and 0.94 eV/cluster, respectively. The stable adsorption of high-density Nb4 on these surfaces should have important applications.
基金Project supported by the International Science & Technology Cooperation Project of China (Grant No 2007DFA40890)the National Natural Science Foundation of China (Grant Nos 10702056 and 10774124)the Program for New Century Excellent Talents in Fujian Province University, China
文摘This paper uses a molecular static approach with a many-body potential to investigate the surface energetic and bonding characteristics of tetrahexahedral platinum nanocrystals enclosed by high-index facets such as {210}, {310}, {410}, {520} and {730}. It mainly focuses on the effect of crystal size and surface Miller index on these characteristics. The results show that the surface energy and dangling bond density increase with decreasing diameter of tetrahexahedral nanocrystals and generally show an order of {210} 〉{730}〉 {520} 〉 {310} 〉 {410}. However, this order is not valid at crystal sizes below 7 nm or so. The results of corresponding surfaces are also presented for comparison.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10975095 and 11005071the National Fun-damental Fund of Personnel Training(J1103210)+1 种基金the Shanxi Provincial Natural Science Foundation under Grant Nos 2007011005 and 2011011001the Shanxi Scholarship Council.
文摘We investigate the dependence of elliptic flows v2 on transverse momentum PT for charged hadrons produced in nucleus-nucleus collisions at high energy by using a multi-source thermal model,where the contribution of source interactions is considered.Our calculated results are approximately in agrcement with the experimental data over a wider PT range from the PHENIX and ALICE collaborations.It is found that the expansion factor increases linearly with the impact parameter from most central (0-5%) to mid-peripheral (35-40%) collisions.
基金Supported by National Natural Science Foundation of China(No 10975116),the Program for New Century Excellent Talents in University(No NCET-07-0730)the Fundamental Research Funds for the Central Universities under Contract No 2010121011.
文摘The ground bands and β-bands of four nuclei 230,232Th and 232,234U in the actinide region are investigated by introducing a collective Do pair into the projected shell model.We discuss the collectivity of the Do pair.The calculated energy schemes agree well with experimental data,and so do the E2 transition rates.
基金Supported in part by the Nonlinear Science Project of China and the State Education Committee Grant for doctor study。
文摘The Metropolis Monte Carlo algorithm is applied to a classical O(2)model on nice tree and Bethe lattice.Finite-size scaling theory is applied to estimate the critical temperature.The results show that the continuous symmetry may not be spontaneously broken even if d_(f)≥d_(w)+1 where df and dw are the fractal dimension and the dimension of the random walk on the structure respectively or even if the random walk on the structure is transient.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10794125,60808006,60821004,61078051 and 60978017.
文摘We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime.A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5mm above the micro-cavity center.The atoms fall down freely in gravitation after shutting off the magnetooptical trap and pass through the cavity.The cavity transmission is strongly affected by the atoms in the cavity,which enables the micro-cavity to sense the atoms individually.We detect the single atom transits either in the resonance or various detunings.The single atom vacuum-Rabi splitting is directly measured to beΩ=2π×23.9 MHz.The average duration of atom-cavity coupling of about 110μs is obtained according to the probability distribution of the atom transits.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10775114 and 10225420.
文摘We introduce a simple model based on the Moran process with network dynamics. Using pair approximation, the cooperation frequencies at equilibrium states are deduced for general interactions. Three usual social dilemmas are discussed in the framework of our model. It is found that they all have a phase transition at the same value of cost-to-benefit ratio. For the prisoner's dilemma game, notably it is exactly the simple rule reported in the literature [Nature 441 (2006) 502]. In our model, the simple rule results from the parent-offspring link. Thus the basic mechanism for cooperation enhancement in network reciprocity is in line with the Hamilton rule of kin selection. Our simulations verify the analysis obtained from pair approximation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11405100)the Natural Science Basic Research Program in Shaanxi Province of China(Grant Nos.2022JZ-02,2020JM-507,and 2019JM-332)+1 种基金the Doctoral Research Fund of Shaanxi University of Science and Technology in China(Grant Nos.2018BJ-02 and 2019BJ-58)the Youth Innovation Team of Shaanxi Universities.
文摘We propose a new generalized Su–Schrieffer–Heeger model with hierarchical long-range hopping based on a onedimensional tetratomic chain. The properties of the topological states and phase transition, which depend on the cointeraction of the intracell and intercell hoppings, are investigated using the phase diagram of the winding number. It is shown that topological states with large positive/negative winding numbers can readily be generated in this system. The properties of the topological states can be verified by the ring-type structures in the trajectory diagram of the complex plane. The topological phase transition is strongly related to the opening(closure) of an energy bandgap at the center(boundaries) of the Brillouin zone. Finally, the non-zero-energy edge states at the ends of the finite system are revealed and matched with the bulk–boundary correspondence.
基金Supported by the National Natural Science Foundation of China under Grant No 10774124.
文摘Adsorption of ordered (2 × 2) arrays of Nb4 clusters on the insulating surface of NaCI(100) is studied by the first-principles calculations within the density functional theory. The calculations on the relaxed geometries and cohesive energies show that both the tetrahedron and quadrangle-Nb4 can be stably adsorbed on this substrate, which may have important applications. The adsorption of quadrangle-Nb4 on the NaCl(100) surface is more stable than that of tetrahedron-Nb4. Both the Nb4 clusters studied and a single Nb atom prefer the top site of the Cl atom in the NaCl(100) surface. Electronic structure analysis suggests that the interactions between the Nb4 clusters and the substrate are weak.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575087 and 11175087)
文摘We study the entanglement between the internal(coin)and the external(position)degrees of freedom in the dynamic and the static deterministic aperiodic quantum walks(QWs).For the dynamic(static)aperiodic QWs,the coin depends on the time(position)and takes two coins C(α)and C(β)arranged in the two classes of generalized Fibonacci(GF)and the Thue–Morse(TM)sequences.We found that for the dynamic QWs,the entanglement of three kinds of the aperiodic QWs are close to the maximal value,which are all much larger than that of the homogeneous QWs.Further,the first class of GF(1st GF)QWs can achieve the maximum entangled state,which is similar to that of the dynamic disordered QWs.And the entanglement of 1st GF QWs is greater than that of the TM QWs,being followed closely by the entanglement of the second class of GF(2nd GF)QWs.For the static QWs,the entanglement of three kinds of the aperiodic QWs are also close to the maximal value and 1st GF QWs can achieve the maximum entangled state.The entanglement of the TM QWs is between1st GF QWs and 2nd GF QWs.However,the entanglement of the static disordered QWs is less than that of three kinds of the aperiodic QWs.This is different from those of the dynamic QWs.From these results,we can conclude that the dynamic and static 1st GF QWs can also be considered as maximal entanglement generators.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11205090 and 11175087)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 12KJB140008)
文摘The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Different from the case without the DM interaction, the excitation spectra ek of this model are not symmetrical in the momentum space and are not always positive. As a result, besides the ferromagnetic (FM) and the paramagnetic (PM) phases, a gapless chiral phase is induced. In the chiral phase, the von Neumann entropy is proportional to log2 L (L is the length of a subchain) with the coefficient A ~ 1/3, which is the same as that of the XY chain in a transverse field without the DM interaction for 7 = 0 and 0 〈 h 〈 1. And in the vicinity of the critical point between the chiral phase and the FM (or PM) phase, the behaviors of the nearest- neighbor concurrence and its derivative are like those for the anisotropy transition.
基金Supported in part by the Nonlinear Science Project of Chinathe National Natural Science Foundation of China。
文摘We present a kind of modified checker board lattice and investigate the random uualk on the frac tai.The spectral dimension is determined via renormalization procedures and the inverse matrix method is used to renormalize the master equation describing the random walk.