期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
OPTIMAL HARVESTING POLICY FOR INSHORE-OFFSHORE FISHERY MODEL WITH IMPULSIVE DIFFUSION 被引量:7
1
作者 董玲珍 陈兰荪 孙丽华 《Acta Mathematica Scientia》 SCIE CSCD 2007年第2期405-412,共8页
This article studies the inshore-offshore fishery model with impulsive diffusion. The existence and global asymptotic stability of both the trivial periodic solution and the positive periodic solution are obtained. Th... This article studies the inshore-offshore fishery model with impulsive diffusion. The existence and global asymptotic stability of both the trivial periodic solution and the positive periodic solution are obtained. The complexity of this system is also analyzed. Moreover, the optimal harvesting policy are given for the inshore subpopulation, which includes the maximum sustainable yield and the corresponding harvesting effort. 展开更多
关键词 Impulsive diffusion inshore-offshore fishery model global asymptotic stability periodic solution optimal harvesting policy
在线阅读 下载PDF
CHARACTERIZATION OF DERIVATIONS ON B(X) BY LOCAL ACTIONS
2
作者 薛天娇 安润玲 侯晋川 《Acta Mathematica Scientia》 SCIE CSCD 2017年第3期668-678,共11页
Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B... Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B = P, here A o B = AB + BA is the usual Jordan product. In this article, we show that if ,A = AlgAN is a Hilbert space nest Mgebra and M = B(H), or A =M= B(X), then, a linear mapδ: A→M is Jordan derivable at a nontrivial projection P ∈ N or an arbitrary but fixed nontrivial idempotent P∈ B(X) if and only if it is a derivation. New equivalent characterization of derivations on these operator algebras was obtained. 展开更多
关键词 DERIVATIONS triangular algebras subspace lattice algebras Jordan derivable maps
在线阅读 下载PDF
GROUND STATES FOR FRACTIONAL SCHRODINGER EQUATIONS WITH ELECTROMAGNETIC FIELDS AND CRITICAL GROWTH 被引量:3
3
作者 Quanqing LI Wenbo WANG +1 位作者 Kaimin TENG Xian WU 《Acta Mathematica Scientia》 SCIE CSCD 2020年第1期59-74,共16页
In this article,we study the following fractional Schrodinger equation with electromagnetic fields and critical growth(-Δ)^sAu+V(x)u=|u|^2^*s-2)u+λf(x,|u|^2)u,x∈R^n,where(-Δ)^sA is the fractional magnetic operator... In this article,we study the following fractional Schrodinger equation with electromagnetic fields and critical growth(-Δ)^sAu+V(x)u=|u|^2^*s-2)u+λf(x,|u|^2)u,x∈R^n,where(-Δ)^sA is the fractional magnetic operator with 0<s<1,N>2s,λ>0,2^*s=2N/(N-2s),f is a continuous function,V∈C(R^n,R)and A∈C(R^n,R^n)are the electric and magnetic potentials,respectively.When V and f are asymptotically periodic in x,we prove that the equation has a ground state solution for largeλby Nehari method. 展开更多
关键词 FRACTIONAL SCHRODINGER EQUATION FRACTIONAL magnetic OPERATOR CRITICAL growth
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部