This article studies the inshore-offshore fishery model with impulsive diffusion. The existence and global asymptotic stability of both the trivial periodic solution and the positive periodic solution are obtained. Th...This article studies the inshore-offshore fishery model with impulsive diffusion. The existence and global asymptotic stability of both the trivial periodic solution and the positive periodic solution are obtained. The complexity of this system is also analyzed. Moreover, the optimal harvesting policy are given for the inshore subpopulation, which includes the maximum sustainable yield and the corresponding harvesting effort.展开更多
Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B...Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B = P, here A o B = AB + BA is the usual Jordan product. In this article, we show that if ,A = AlgAN is a Hilbert space nest Mgebra and M = B(H), or A =M= B(X), then, a linear mapδ: A→M is Jordan derivable at a nontrivial projection P ∈ N or an arbitrary but fixed nontrivial idempotent P∈ B(X) if and only if it is a derivation. New equivalent characterization of derivations on these operator algebras was obtained.展开更多
In this article,we study the following fractional Schrodinger equation with electromagnetic fields and critical growth(-Δ)^sAu+V(x)u=|u|^2^*s-2)u+λf(x,|u|^2)u,x∈R^n,where(-Δ)^sA is the fractional magnetic operator...In this article,we study the following fractional Schrodinger equation with electromagnetic fields and critical growth(-Δ)^sAu+V(x)u=|u|^2^*s-2)u+λf(x,|u|^2)u,x∈R^n,where(-Δ)^sA is the fractional magnetic operator with 0<s<1,N>2s,λ>0,2^*s=2N/(N-2s),f is a continuous function,V∈C(R^n,R)and A∈C(R^n,R^n)are the electric and magnetic potentials,respectively.When V and f are asymptotically periodic in x,we prove that the equation has a ground state solution for largeλby Nehari method.展开更多
文摘This article studies the inshore-offshore fishery model with impulsive diffusion. The existence and global asymptotic stability of both the trivial periodic solution and the positive periodic solution are obtained. The complexity of this system is also analyzed. Moreover, the optimal harvesting policy are given for the inshore subpopulation, which includes the maximum sustainable yield and the corresponding harvesting effort.
基金Supported by National Natural Foundation of China(11001194)Provincial International Cooperation Project of Shanxi(2014081027-2)
文摘Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B = P, here A o B = AB + BA is the usual Jordan product. In this article, we show that if ,A = AlgAN is a Hilbert space nest Mgebra and M = B(H), or A =M= B(X), then, a linear mapδ: A→M is Jordan derivable at a nontrivial projection P ∈ N or an arbitrary but fixed nontrivial idempotent P∈ B(X) if and only if it is a derivation. New equivalent characterization of derivations on these operator algebras was obtained.
基金supported in part by the NationalNatural Science Foundation of China(11801153,11501403,11701322,11561072)the Honghe University Doctoral Research Programs(XJ17B11,XJ17B12,DCXL171027,201810687010)+4 种基金the Yunnan Province Applied Basic Research for Youths(2018FD085)the Yunnan Province Local University(Part)Basic Research Joint Project(2017FH001-013)the Natural Sciences Foundation of Yunnan Province(2016FB011)the Yunnan Province Applied Basic Research for General Project(2019FB001)Technology Innovation Team of University in Yunnan Province。
文摘In this article,we study the following fractional Schrodinger equation with electromagnetic fields and critical growth(-Δ)^sAu+V(x)u=|u|^2^*s-2)u+λf(x,|u|^2)u,x∈R^n,where(-Δ)^sA is the fractional magnetic operator with 0<s<1,N>2s,λ>0,2^*s=2N/(N-2s),f is a continuous function,V∈C(R^n,R)and A∈C(R^n,R^n)are the electric and magnetic potentials,respectively.When V and f are asymptotically periodic in x,we prove that the equation has a ground state solution for largeλby Nehari method.