期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
TDOA and track optimization of UAV swarm based on D-optimality 被引量:8
1
作者 ZHOU Ronghua SUN Hemin +1 位作者 LI Hao LUO Weilin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1140-1151,共12页
To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time di... To solve the problem of time difference of arrival(TDOA)positioning and tracking of targets by the unmanned aerial vehicles(UAV)swarm in future air combat,this paper adopts the TDOA positioning method and uses time difference sensors of the UAV swarm to locate target radiation sources.Firstly,a TDOA model for the target is set up for the UAV swarm under the condition that the error variance varies with the received signal-to-noise ratio.The accuracy of the positioning error is analyzed by geometric dilution of precision(GDOP).The D-optimality criterion of the positioning model is theoretically derived.The target is positioned and settled,and the maximum value of the Fisher information matrix determinant is used as the optimization objective function to optimize the track of the UAV in real time.Simulation results show that the track optimization improves the positioning accuracy and stability of the UAV swarm to the target. 展开更多
关键词 time difference of arrival(TDOA) unmanned aerial vehicles(UAV)swarm D-OPTIMALITY track optimization
在线阅读 下载PDF
Hybrid TDOA/FDOA and track optimization of UAV swarm based on A-optimality 被引量:5
2
作者 LI Hao SUN Hemin +1 位作者 ZHOU Ronghua ZHANG Huainian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期149-159,共11页
The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA position... The source location based on the hybrid time difference of arrival(TDOA)/frequency difference of arrival(FDOA) is a basic problem in wireless sensor networks, and the layout of sensors in the hybrid TDOA/FDOA positioning will greatly affect the accuracy of positioning. Using unmanned aerial vehicle(UAV) as base stations, by optimizing the trajectory of the UAV swarm, an optimal positioning configuration is formed to improve the accuracy of the target position and velocity estimation. In this paper, a hybrid TDOA/FDOA positioning model is first established, and the positioning accuracy of the hybrid TDOA/FDOA under different positioning configurations and different measurement errors is simulated by the geometric dilution of precision(GDOP) factor. Second, the Cramer-Rao lower bound(CRLB) matrix of hybrid TDOA/FDOA location under different moving states of the target is derived theoretically, the objective function of the track optimization is obtained, and the track of the UAV swarm is optimized in real time. The simulation results show that the track optimization effectively improves the accuracy of the target position and velocity estimation. 展开更多
关键词 unmanned aerial vehicle(UAV)swarm time difference of arrival(TDOA) frequency difference of arrival(FDOA) A-OPTIMALITY track optimization
在线阅读 下载PDF
Vehicle kinematics modeling and design of vehicle trajectory generator system 被引量:3
3
作者 李昭 蔡自兴 +2 位作者 任孝平 陈爱斌 薛志超 《Journal of Central South University》 SCIE EI CAS 2012年第10期2860-2865,共6页
A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajec... A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design. 展开更多
关键词 vehicle kinematics model integrated navigation system track generator IMU element system simulation
在线阅读 下载PDF
A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation 被引量:7
4
作者 WU Husheng LI Hao XIAO Renbin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1180-1199,共20页
It is difficult for the double suppression division algorithm of bee colony to solve the spatio-temporal coupling or have higher dimensional attributes and undertake sudden tasks.Using the idea of clustering,after clu... It is difficult for the double suppression division algorithm of bee colony to solve the spatio-temporal coupling or have higher dimensional attributes and undertake sudden tasks.Using the idea of clustering,after clustering tasks according to spatio-temporal attributes,the clustered groups are linked into task sub-chains according to similarity.Then,based on the correlation between clusters,the child chains are connected to form a task chain.Therefore,the limitation is solved that the task chain in the bee colony algorithm can only be connected according to one dimension.When a sudden task occurs,a method of inserting a small number of tasks into the original task chain and a task chain reconstruction method are designed according to the relative relationship between the number of sudden tasks and the number of remaining tasks.Through the above improvements,the algorithm can be used to process tasks with spatio-temporal coupling and burst tasks.In order to reflect the efficiency and applicability of the algorithm,a task allocation model for the unmanned aerial vehicle(UAV)group is constructed,and a one-to-one correspondence between the improved bee colony double suppression division algorithm and each attribute in the UAV group is proposed.Task assignment has been constructed.The study uses the self-adjusting characteristics of the bee colony to achieve task allocation.Simulation verification and algorithm comparison show that the algorithm has stronger planning advantages and algorithm performance. 展开更多
关键词 bee colony double inhibition labor division algorithm high dimensional attribute sudden task reforming the task chain task allocation model
在线阅读 下载PDF
UAV penetration mission path planning based on improved holonic particle swarm optimization 被引量:5
5
作者 LUO Jing LIANG Qianchao LI Hao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期197-213,共17页
To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on impr... To meet the requirements of safety, concealment, and timeliness of trajectory planning during the unmanned aerial vehicle(UAV) penetration process, a three-dimensional path planning algorithm is proposed based on improved holonic particle swarm optimization(IHPSO). Firstly, the requirements of terrain threat, radar detection, and penetration time in the process of UAV penetration are quantified. Regarding radar threats, a radar echo analysis method based on radar cross section(RCS)and the spatial situation is proposed to quantify the concealment of UAV penetration. Then the structure-particle swarm optimization(PSO) algorithm is improved from three aspects.First, the conversion ability of the search strategy is enhanced by using the system clustering method and the information entropy grouping strategy instead of random grouping and constructing the state switching conditions based on the fitness function.Second, the unclear setting of iteration numbers is addressed by using particle spacing to create the termination condition of the algorithm. Finally, the trajectory is optimized to meet the intended requirements by building a predictive control model and using the IHPSO for simulation verification. Numerical examples show the superiority of the proposed method over the existing PSO methods. 展开更多
关键词 path planning network radar holonic structure particle swarm algorithm(PSO) predictive control model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部