Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of mo...Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.展开更多
The sewage sludge was used to produce adsorbent by controlling the pyrolytic and chemical conditions. Using the adsorbent derived from sewage sludge to adsorb the low concentration SO2 in fixed bed system, the effects...The sewage sludge was used to produce adsorbent by controlling the pyrolytic and chemical conditions. Using the adsorbent derived from sewage sludge to adsorb the low concentration SO2 in fixed bed system, the effects of the metallic derivatives on characteristics of the adsorbent were investigated at different compositions of the gaseous mixtures. The results show that when the mass fraction of vanadium reaches 0.5% and the mass fraction of (iron,) calcium, copper, nickel reach approximately 0.9%, under the condition that the adsorption mixture contains (0.12%SO2,) 3%O2 and 10% water vapor, the maximum adsorption capacity of SO2 can be obtained to be 128, 109, 90, 82, 78 mg·g-1, respectively. So the metallic derivatives fixed onto adsorbent derived from sewage sludge especially vanadium have great effects on of the sorption characteristics of the adsorbent with respect to SO2.展开更多
The tailing soils were from 10 mining areas in Hunan Province. To predict the potential impact of tailings on nearby environments, the characteristics such as the pH value, loss on ignition, cation exchange capacity, ...The tailing soils were from 10 mining areas in Hunan Province. To predict the potential impact of tailings on nearby environments, the characteristics such as the pH value, loss on ignition, cation exchange capacity, and the concentration and speciation of heavy metals in the tailings were investigated. Based on these characteristics, the pollution index and danger index were calculated so as to evaluate the priorities of remediation. The results show that the concentrations of Pb, Cd, Cu and Zn exceed the tolerable levels of the phytotoxicity in the most tailings. The large proportion of heavy metals exists in the form of residual fraction in most tailings, followed by sulfides/organic and Fe/Mn oxide fractions, and a little in the exchangeable and carbonate fraction. The calculated pollution indices for the tailing samples range from 1.41 to 83.42, which indicates that all the tailings contain heavy metals at a level that causes toxicity to the ecosystem. The danger indices for the tailing samples range from 0.06 to 387.00. The highest value of the danger indices is that of Yongzhou sample, reaching 387.00; the lowest one is that of Xikuangshan sample, only 0.06. Considering the results of pollution index and danger index in combination, the priority of remediation is determined to be Yongzhou, Baoshan, Xiangtan and Lengshuijiang.展开更多
基金Supported by National Natural Science Fund Project(51275052)Key project supported by Beijing Municipal Natural Science Foundation(3131002)Open topic of Key Laboratory of Key Laboratory of Modern Measurement & Control Technology,Ministry of Education(KF20141123202,KF20111123201)
文摘Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.
文摘The sewage sludge was used to produce adsorbent by controlling the pyrolytic and chemical conditions. Using the adsorbent derived from sewage sludge to adsorb the low concentration SO2 in fixed bed system, the effects of the metallic derivatives on characteristics of the adsorbent were investigated at different compositions of the gaseous mixtures. The results show that when the mass fraction of vanadium reaches 0.5% and the mass fraction of (iron,) calcium, copper, nickel reach approximately 0.9%, under the condition that the adsorption mixture contains (0.12%SO2,) 3%O2 and 10% water vapor, the maximum adsorption capacity of SO2 can be obtained to be 128, 109, 90, 82, 78 mg·g-1, respectively. So the metallic derivatives fixed onto adsorbent derived from sewage sludge especially vanadium have great effects on of the sorption characteristics of the adsorbent with respect to SO2.
基金Project (2001AA644020) supported by the National"863"High Technology Research and Development Program of China
文摘The tailing soils were from 10 mining areas in Hunan Province. To predict the potential impact of tailings on nearby environments, the characteristics such as the pH value, loss on ignition, cation exchange capacity, and the concentration and speciation of heavy metals in the tailings were investigated. Based on these characteristics, the pollution index and danger index were calculated so as to evaluate the priorities of remediation. The results show that the concentrations of Pb, Cd, Cu and Zn exceed the tolerable levels of the phytotoxicity in the most tailings. The large proportion of heavy metals exists in the form of residual fraction in most tailings, followed by sulfides/organic and Fe/Mn oxide fractions, and a little in the exchangeable and carbonate fraction. The calculated pollution indices for the tailing samples range from 1.41 to 83.42, which indicates that all the tailings contain heavy metals at a level that causes toxicity to the ecosystem. The danger indices for the tailing samples range from 0.06 to 387.00. The highest value of the danger indices is that of Yongzhou sample, reaching 387.00; the lowest one is that of Xikuangshan sample, only 0.06. Considering the results of pollution index and danger index in combination, the priority of remediation is determined to be Yongzhou, Baoshan, Xiangtan and Lengshuijiang.