期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Understanding the geometric and electronic factors of PtNi bimetallic surfaces for efficient and selective catalytic hydrogenation of biomass-derived oxygenates 被引量:1
1
作者 Jingcheng Wu Chuangwei Liu +5 位作者 Yuting Zhu Xiangbo Song Chengyan Wen Xinghua Zhang Chenguang Wang Longlong Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期16-24,共9页
Ni-base catalysts are promising candidate for the hydrogenation of furfural(FAL) to high-value chemicals.However,slow intermediate desorption and low selectivity limit its implementation.Identifying the catalytic perf... Ni-base catalysts are promising candidate for the hydrogenation of furfural(FAL) to high-value chemicals.However,slow intermediate desorption and low selectivity limit its implementation.Identifying the catalytic performance of each active sites is vital to design hydrogenation catalyst,and tuning the geometrical sites at molecule level in PtNi could lead to the modification of electronic structure,and thus the selectity for the hydrogenation of FAL was modulated.Herein,PtNi hollow nanoframes(PtNi HNFs) with three dimensional(3 D) molecular accessibility were synthesized,EDX results suggested that Ni was evenly distributed inside of the hollow nanoframes,whereas Pt was relatively concentrated at the edges.DFT calculation demonstrated that PtNi significant decrease the desorption energy of the intermediates.This strategy could not only enhance the desorption of intermediates to improve the catalytic performance,but also transfer the adsorption mode of FAL on catalyst surface to selective hydrogenation of FAL to FOL or THFA.The PtNi HNFs catalyst afforded excellent catalytic performance for selective hydrogenation of a broad range of biomass-derived platform chemicals under mild conditions,especially of FAL to furfuryl alcohol(FOL),in quantitative FOL yields(99%) with a high TOF of 2.56 h^(-1).It is found that the superior performance of PtNi HNFs is attributed to its 3 D hierarchical structure and synergistic electronic effects between Pt and Ni.Besides,the kinetic study demonstrated that the activation energy for hydrogenation of FAL was as low as 54.95 kJ mol^(-1). 展开更多
关键词 PtNi HNFs BIOMASS HYDROGENATION Biofuels Heterogeneous catalysts
在线阅读 下载PDF
High-mobility two-dimensional electron gases at oxide interfaces:Origin and opportunities 被引量:1
2
作者 陈允忠 Nini Pryds +2 位作者 孙继荣 沈保根 SФren Linderoth 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期1-11,共11页
Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electro... Our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures is reviewed along with a more general background of two-dimensional electron gas (2DEG) at oxide interfaces. Due to the presence of oxygen vacancies at the SrTiO3 surface, metallic conduction can be created at room temperature in perovskite-type interfaces when the overlayer oxide ABO3 has Al, Ti, Zr, or Hf elements at the B sites. Furthermore, relying on interface-stabilized oxygen vacancies, we have created a new type of 2DEG at the heterointerface between SrTiO3 and a spinel γ-Al2O3 epitaxial film with compatible oxygen ion sublattices. This 2DEG exhibits an electron mobility exceeding 100000 cm2·V-1·s-1, more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces. Our findings pave the way for the design of high-mobility all-oxide electronic devices and open a route toward the studies of mesoscopic physics with complex oxides. 展开更多
关键词 oxide interfaces two-dimensional electron gas (2DEG) SRTIO3 oxygen vacancies
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部