Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating condi...The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method.展开更多
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe...Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies.展开更多
Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily ...Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering.展开更多
Trichloroethylene (TCE) pretreatment of Si surface prior to HfO2 deposition is employed to fabricate HfO2 gatedielectric MOS capacitors. Influence of this processing procedure on interlayer growth, HfO2/Si interface...Trichloroethylene (TCE) pretreatment of Si surface prior to HfO2 deposition is employed to fabricate HfO2 gatedielectric MOS capacitors. Influence of this processing procedure on interlayer growth, HfO2/Si interface properties, gate-oxide leakage and device reliability is investigated. Among the surface pretreatments in NH3, NO, N2O and TCE ambients, the TCE pretreatment gives the least interlayer growths the lowest interface-state density, the smallest gate leakage and the highest reliability. All these improvements should be ascribed to the passivation effects of Cl2 and HC1 on the structural defects in the interlayer and at the interface, and also their gettering effects on the ion contamination in the gate dielectric.展开更多
The paper reports that Hfrio dielectric is deposited by reactive co-sputtering of Hf and Ti targets in an Ar/O2 ambience, followed by an annealing in different gas ambiences of N2, NO and NH3 at 600℃ for 2 min. Capac...The paper reports that Hfrio dielectric is deposited by reactive co-sputtering of Hf and Ti targets in an Ar/O2 ambience, followed by an annealing in different gas ambiences of N2, NO and NH3 at 600℃ for 2 min. Capacitancevoltage and gate-leakage properties are characterized and compared. The results indicate that the NO-annealed sample exhibits the lowest interface-state and dielectric-charge densities and best device reliability. This is attributed to the fact that nitridation can create strong Si≡N bonds to passivate dangling Si bonds and replace strained Si-O bonds, thus the sample forms a hardened dielectric/Si interface with high reliability.展开更多
Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content o...Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.展开更多
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo...Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices.展开更多
In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility o...In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe- type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175 J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode, indicating the possibility that corona-generated species play a crucial role in desorption.展开更多
In this paper, building to grid(B2G) and vehicle to grid(V2G) have been defined with clear and practical understanding. Both of them are new generation technologies which are the essential part of smart city living an...In this paper, building to grid(B2G) and vehicle to grid(V2G) have been defined with clear and practical understanding. Both of them are new generation technologies which are the essential part of smart city living and crowd energy clustering. Firstly, an in-detailed overview has been provided with an introduction to B2G and V2G followed by a historical overview and theoretical analysis in respect to smart city planning. Next, a review is conducted on current and previous smart living research, which deals with B2G and V2G. Efficient B2G and V2G implementations in practical cases then have been discussed. Lastly, both of these technical prospects have been analyzed in crowd energy diagram.展开更多
This paper provides a technical analysis of energy harvesting (EH) in the field of power and energy sector, including different aspects of harvesting energy, individual case history, control strategies of harvesting i...This paper provides a technical analysis of energy harvesting (EH) in the field of power and energy sector, including different aspects of harvesting energy, individual case history, control strategies of harvesting in the field of power and energy sector together with the current trend and future aspects of it. EH is comparatively a new concept which is growing very fast since the 20th century and catching new generation research approaches. This paper not only describes the past and current scenarios of harvesting energy with radio frequency (RF) and renewables but also gives author’s own anticipation of the upcoming future trends of it by comparing the case histories.展开更多
The photovoltaic performance of perovskite sloar cells(PSCs)is strongly dependent on the crystallinity,morphorlogy and defects of perovskite films.In the present work,a novel strategy was developed to fabricate the hi...The photovoltaic performance of perovskite sloar cells(PSCs)is strongly dependent on the crystallinity,morphorlogy and defects of perovskite films.In the present work,a novel strategy was developed to fabricate the high quality CsPbI3 inorganic perovskite by tuning the growth dynamics of CsPbI3 by pretreatment of fresh CsPbI3 films with phenylethylamine iodide(PEAI).The PEAI can mediate the phase transformation from 1D(DMAPbI3)(DMA:dimethylammonium)to 3D CsPbI3 all-inorganic perovskite films via the PEA2CsPb2I7 of 2D perovskite intermediate phase,resulting in highly crystalline CsPbI3 perovskite films with remarkably enlarged grains and reduced defects.The as-achieved highly crystalline CsPbI3 inorganic perovskite not only exhibited improved phase stability but also significant reduced defects.The perovskite solar cells based on these CsPbI3 thin films exhibited a champion efficiency of 17.08%,much higher than those prepared through posttreatment or direct addition of PEAI into CsPbI3 precursor solution.This work not only developed an effective strategy to prepare high crystalline CsPbI3 film and highly efficient CsPbI3-based all-inorganic PSCs,but also unraveled the mediation mechanism of CsPbI3by pre-treatment of PEAI,shedding light for further development of high perfomance perovskite-based optoelectronics.展开更多
Human skin is the largest organ and also the main barrier that prevents foreign substances from entering the body.The surface properties of the skin are relevant for transdermal drug delivery and cosmetics.Yucatan mic...Human skin is the largest organ and also the main barrier that prevents foreign substances from entering the body.The surface properties of the skin are relevant for transdermal drug delivery and cosmetics.Yucatan micropig skin is used as a substitute for human skin.A microplasma electrode is used for surface modification of the skin epidermal layer of the Yucatan micropig.Microplasma dielectric barrier discharge has a thin dielectric as a barrier (~50 μm) and a frequency of 25 kHz.The surface properties of the epidermal layer were characterized by the measurement of the contact angle of the water droplet.The effects of different gases such as air,nitrogen,oxygen,helium or argon were compared.The change of the contact angle is temporal and it is returned to its initial state after several hours.Among the gases used for plasma ignition,oxygen and argon were the most effective for skin treatment.The distance of the skin from the electrode and the treatment time played a crucial roles in the increasing water contact angle.Changes of surface atomic concentration were determined by x-ray photoelectron spectroscopy.After microplasma treatment,the oxygen and nitrogen concentration increased at the skin surface.展开更多
A non-equilibrium atmospheric pressure argon(Ar)plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES),and theoretically by collisional-radiative(CR)mo...A non-equilibrium atmospheric pressure argon(Ar)plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES),and theoretically by collisional-radiative(CR)model.More specifically,the electron temperature and electron density of plasma are obtained directly by the laser Thomson scattering,the gas temperature is measured by laser Raman scattering,the optical emissions of excited Ar states of plasma are measured by OES.The laser scattering results show that the electron temperature is about 1 eV which is similar to that excited by 60 Hz AC power,but the gas temperature is as low as 300 K compared to about 700 K excited by 60 Hz AC power.It is shown that the microsecond pulsed power supply,rather than nanosecond ones,is short enough to reduce the gas temperature of atmospheric pressure plasma to near room temperature.The electron temperature and electron density are also obtained by CR model based on OES,and find that the intensities of the optical emission intensity lines of 727.41,811.73,841.08,842.83,852.44 and 912.86 nm of Ar can be used to characterize the behavior of electron density and electron temperature,it is very useful to quickly estimate the activity of the atmospheric pressure Ar plasma in many applications.展开更多
Plasma activated water(PAW)was prepared for 10 min to be applied one tofive times as a foliar spray to rice plants,to investigate plant growth,yield and the concentrations of total soluble protein and sugar in the rice...Plasma activated water(PAW)was prepared for 10 min to be applied one tofive times as a foliar spray to rice plants,to investigate plant growth,yield and the concentrations of total soluble protein and sugar in the rice grains produced.The results reveal that(1)the plant height,stem diameter,dry weight,chlorophyll and total carotene concentrations were improved by∼15%,∼25%,∼24%,∼47%and∼45%,respectively,with respect to control,(2)defense mechanisms of the plants treated with PAW were improved,(3)concentrations of total soluble protein and sugar were enhanced in the rice grains of PAW treated plants and(4)yield was increased by∼14%.展开更多
Addressing climate change demands a significant shift away from fossil fuels,with sectors like electricity and transportation relying heavily on renewable energy.Integral to this transition are energy storage systems,...Addressing climate change demands a significant shift away from fossil fuels,with sectors like electricity and transportation relying heavily on renewable energy.Integral to this transition are energy storage systems,notably lithium-ion batteries.Over time,these batteries degrade,affecting their efficiency and posing safety risks.Monitoring and predicting battery aging is essential,especially estimating its state of health(SOH).Various SOH estimation methods exist,from traditional model-based approaches to machine learning approaches.展开更多
Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier and doped source-drain contacts carbon nanotube field effect transistors(CNTFETs) with strain applied. The doped source-dra...Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier and doped source-drain contacts carbon nanotube field effect transistors(CNTFETs) with strain applied. The doped source-drain contact CNTFETs outperform the Schottky contact devices with and without strain applied. The off-state current in both types of contact is similar with and without strain applied. This is because both types of contact offer very similar potential barrier in off-state. However, the on-state current in doped contact devices is much higher due to better modulation of on-state potential profile, and its variation with strain is sensitive to the device contact type. The on/off current ratio and the inverse subthreshold slope are better with doped source-drain contact, and their variations with strain are relatively less sensitive to the device contact type. The channel transconductance and device switching performance are much better with doped source-drain contact, and their variations with strain are sensitive to device contact type.展开更多
As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potentia...As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potential of halide PVK solar cells as a highly competitive substitute to replace silicon-based solar cells in the photovoltaic market [2–6].展开更多
Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic ...Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transi- tions of DNA are also experimentally observed in mixing spermidine with X-phage DNA at different concentrations of NaCl/MgCl2 solutions.展开更多
Mid-infrared absorption and Raman spectra of the geometrically frustrated material series, hydroxyl cobalt halides β-CO2(OH)3Cl and β-CO2(OH)3Br, are first, to the best of our knowledge, measured at room tempera...Mid-infrared absorption and Raman spectra of the geometrically frustrated material series, hydroxyl cobalt halides β-CO2(OH)3Cl and β-CO2(OH)3Br, are first, to the best of our knowledge, measured at room temperature, to study the corresponding relationship between their vibrational spectral properties and crystal microstructures. Through the comparative analysis of the four spectra we have categorically assigned the OH-related vibration modes of hydroxyl groups in the trimeric hydrogen bond environment (Co3 =OH)3 … Cl/Br, and tentatively suggested vibration modes of O-Co-O, Co O and Cl/Br-Co-Cl/Br units. These results can also become the basis for analysing their low-temperature spectral properties, which can help to understand the underlying physics of their exotic geometric frustration phenomena around phase transition temperatures.展开更多
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金the financial support from the National Natural Science Foundation of China(52207229)the financial support from the China Scholarship Council(202207550010)。
文摘The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method.
基金support from Australian Research Council (ARC, FT150100450, IH150100006 and CE170100039)support from the MCATM and the FLEET+1 种基金the support from Shenzhen Nanshan District Pilotage Team Program (LHTD20170006)support from Guangzhou Science and Technology Program (Grant No. 201804010322)
文摘Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies.
基金financially supported by the National Natural Science Foundation of China(52330004)the Fundamental Research Funds for the Central Universities(WUT:2023IVA075 and 2023IVB009)+3 种基金the financial support from RISE project Grant(Q-CDBK)Start-up Fund for RAPs under the Strategic Hiring Scheme(PoluU)(1-BD1H)PRI Strategic Grant(1-CD7X)RI-iWEAR Strategic Supporting Scheme(1-CD94)。
文摘Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering.
基金Project supported by the National Natural Science Foundation of China (Grant No 60376019).
文摘Trichloroethylene (TCE) pretreatment of Si surface prior to HfO2 deposition is employed to fabricate HfO2 gatedielectric MOS capacitors. Influence of this processing procedure on interlayer growth, HfO2/Si interface properties, gate-oxide leakage and device reliability is investigated. Among the surface pretreatments in NH3, NO, N2O and TCE ambients, the TCE pretreatment gives the least interlayer growths the lowest interface-state density, the smallest gate leakage and the highest reliability. All these improvements should be ascribed to the passivation effects of Cl2 and HC1 on the structural defects in the interlayer and at the interface, and also their gettering effects on the ion contamination in the gate dielectric.
基金Project supported by the National Natural Science Foundation of China (Grant No 60376019).
文摘The paper reports that Hfrio dielectric is deposited by reactive co-sputtering of Hf and Ti targets in an Ar/O2 ambience, followed by an annealing in different gas ambiences of N2, NO and NH3 at 600℃ for 2 min. Capacitancevoltage and gate-leakage properties are characterized and compared. The results indicate that the NO-annealed sample exhibits the lowest interface-state and dielectric-charge densities and best device reliability. This is attributed to the fact that nitridation can create strong Si≡N bonds to passivate dangling Si bonds and replace strained Si-O bonds, thus the sample forms a hardened dielectric/Si interface with high reliability.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076113 and 61274085)the Natural Science Foundation of Guangdong Province(Grant No.2016A030313474)the University Development Fund(Nanotechnology Research Institute,Grant No.00600009)of the University of Hong Kong,China
文摘Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.
基金supported by the National Natural Science Foundation of China(No.52207229)the Key Research and Development Program of Ningxia Hui Autonomous Region of China(No.2024BEE02003)+1 种基金the financial support from the AEGiS Research Grant 2024,University of Wollongong(No.R6254)the financial support from the China Scholarship Council(No.202207550010).
文摘Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices.
文摘In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe- type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175 J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode, indicating the possibility that corona-generated species play a crucial role in desorption.
文摘In this paper, building to grid(B2G) and vehicle to grid(V2G) have been defined with clear and practical understanding. Both of them are new generation technologies which are the essential part of smart city living and crowd energy clustering. Firstly, an in-detailed overview has been provided with an introduction to B2G and V2G followed by a historical overview and theoretical analysis in respect to smart city planning. Next, a review is conducted on current and previous smart living research, which deals with B2G and V2G. Efficient B2G and V2G implementations in practical cases then have been discussed. Lastly, both of these technical prospects have been analyzed in crowd energy diagram.
文摘This paper provides a technical analysis of energy harvesting (EH) in the field of power and energy sector, including different aspects of harvesting energy, individual case history, control strategies of harvesting in the field of power and energy sector together with the current trend and future aspects of it. EH is comparatively a new concept which is growing very fast since the 20th century and catching new generation research approaches. This paper not only describes the past and current scenarios of harvesting energy with radio frequency (RF) and renewables but also gives author’s own anticipation of the upcoming future trends of it by comparing the case histories.
基金supported by the National Natural Science Foundation of China(No.51602106)。
文摘The photovoltaic performance of perovskite sloar cells(PSCs)is strongly dependent on the crystallinity,morphorlogy and defects of perovskite films.In the present work,a novel strategy was developed to fabricate the high quality CsPbI3 inorganic perovskite by tuning the growth dynamics of CsPbI3 by pretreatment of fresh CsPbI3 films with phenylethylamine iodide(PEAI).The PEAI can mediate the phase transformation from 1D(DMAPbI3)(DMA:dimethylammonium)to 3D CsPbI3 all-inorganic perovskite films via the PEA2CsPb2I7 of 2D perovskite intermediate phase,resulting in highly crystalline CsPbI3 perovskite films with remarkably enlarged grains and reduced defects.The as-achieved highly crystalline CsPbI3 inorganic perovskite not only exhibited improved phase stability but also significant reduced defects.The perovskite solar cells based on these CsPbI3 thin films exhibited a champion efficiency of 17.08%,much higher than those prepared through posttreatment or direct addition of PEAI into CsPbI3 precursor solution.This work not only developed an effective strategy to prepare high crystalline CsPbI3 film and highly efficient CsPbI3-based all-inorganic PSCs,but also unraveled the mediation mechanism of CsPbI3by pre-treatment of PEAI,shedding light for further development of high perfomance perovskite-based optoelectronics.
文摘Human skin is the largest organ and also the main barrier that prevents foreign substances from entering the body.The surface properties of the skin are relevant for transdermal drug delivery and cosmetics.Yucatan micropig skin is used as a substitute for human skin.A microplasma electrode is used for surface modification of the skin epidermal layer of the Yucatan micropig.Microplasma dielectric barrier discharge has a thin dielectric as a barrier (~50 μm) and a frequency of 25 kHz.The surface properties of the epidermal layer were characterized by the measurement of the contact angle of the water droplet.The effects of different gases such as air,nitrogen,oxygen,helium or argon were compared.The change of the contact angle is temporal and it is returned to its initial state after several hours.Among the gases used for plasma ignition,oxygen and argon were the most effective for skin treatment.The distance of the skin from the electrode and the treatment time played a crucial roles in the increasing water contact angle.Changes of surface atomic concentration were determined by x-ray photoelectron spectroscopy.After microplasma treatment,the oxygen and nitrogen concentration increased at the skin surface.
基金supported by the National Key Research and Development Program of China(Nos.2017YFA0402300,2017YFA0304900 and 2016YFA0300600)National Natural Science Foundation of China(Nos.11604334,11575099,11474347 and 11874051)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB28000000and XDB07030000)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(KF201807)。
文摘A non-equilibrium atmospheric pressure argon(Ar)plasma excited by microsecond pulse is studied experimentally by laser scattering and optical emission spectroscopy(OES),and theoretically by collisional-radiative(CR)model.More specifically,the electron temperature and electron density of plasma are obtained directly by the laser Thomson scattering,the gas temperature is measured by laser Raman scattering,the optical emissions of excited Ar states of plasma are measured by OES.The laser scattering results show that the electron temperature is about 1 eV which is similar to that excited by 60 Hz AC power,but the gas temperature is as low as 300 K compared to about 700 K excited by 60 Hz AC power.It is shown that the microsecond pulsed power supply,rather than nanosecond ones,is short enough to reduce the gas temperature of atmospheric pressure plasma to near room temperature.The electron temperature and electron density are also obtained by CR model based on OES,and find that the intensities of the optical emission intensity lines of 727.41,811.73,841.08,842.83,852.44 and 912.86 nm of Ar can be used to characterize the behavior of electron density and electron temperature,it is very useful to quickly estimate the activity of the atmospheric pressure Ar plasma in many applications.
基金the Ministry of Education(no.LS2017544)the People’s Republic of Bangladesh,and the University of Rajshahi(No.62/5/52/RU/Engg-05/2020-2021)for their partialfinancial support to carry out this work。
文摘Plasma activated water(PAW)was prepared for 10 min to be applied one tofive times as a foliar spray to rice plants,to investigate plant growth,yield and the concentrations of total soluble protein and sugar in the rice grains produced.The results reveal that(1)the plant height,stem diameter,dry weight,chlorophyll and total carotene concentrations were improved by∼15%,∼25%,∼24%,∼47%and∼45%,respectively,with respect to control,(2)defense mechanisms of the plants treated with PAW were improved,(3)concentrations of total soluble protein and sugar were enhanced in the rice grains of PAW treated plants and(4)yield was increased by∼14%.
基金supported by the National Natural Science Foundation of China(72201152 and 52207229)。
文摘Addressing climate change demands a significant shift away from fossil fuels,with sectors like electricity and transportation relying heavily on renewable energy.Integral to this transition are energy storage systems,notably lithium-ion batteries.Over time,these batteries degrade,affecting their efficiency and posing safety risks.Monitoring and predicting battery aging is essential,especially estimating its state of health(SOH).Various SOH estimation methods exist,from traditional model-based approaches to machine learning approaches.
文摘Atomistic quantum simulation is performed to compare the performance of zero-Schottky-barrier and doped source-drain contacts carbon nanotube field effect transistors(CNTFETs) with strain applied. The doped source-drain contact CNTFETs outperform the Schottky contact devices with and without strain applied. The off-state current in both types of contact is similar with and without strain applied. This is because both types of contact offer very similar potential barrier in off-state. However, the on-state current in doped contact devices is much higher due to better modulation of on-state potential profile, and its variation with strain is sensitive to the device contact type. The on/off current ratio and the inverse subthreshold slope are better with doped source-drain contact, and their variations with strain are relatively less sensitive to the device contact type. The channel transconductance and device switching performance are much better with doped source-drain contact, and their variations with strain are sensitive to device contact type.
基金supported by the National Key R&D Program of China (2018YFE0208500)the Japan Science and Technology Agency (JST) Mirai program (JPMJMI17EA)。
文摘As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potential of halide PVK solar cells as a highly competitive substitute to replace silicon-based solar cells in the photovoltaic market [2–6].
基金supported by the National Natural Science Foundation of China(Grant No.31340026)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.Z13F20019 and LQ12E01003)the Science and Technology Project of Zhejiang Science and Technology Department,China(Grant No.2014C31147)
文摘Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transi- tions of DNA are also experimentally observed in mixing spermidine with X-phage DNA at different concentrations of NaCl/MgCl2 solutions.
基金Project supported by the Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science (Grant No.Kiban-B 19340100)the Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education,Culture,Sports,Science and Technology,Japan (Grant No.Tokutei 22014008)
文摘Mid-infrared absorption and Raman spectra of the geometrically frustrated material series, hydroxyl cobalt halides β-CO2(OH)3Cl and β-CO2(OH)3Br, are first, to the best of our knowledge, measured at room temperature, to study the corresponding relationship between their vibrational spectral properties and crystal microstructures. Through the comparative analysis of the four spectra we have categorically assigned the OH-related vibration modes of hydroxyl groups in the trimeric hydrogen bond environment (Co3 =OH)3 … Cl/Br, and tentatively suggested vibration modes of O-Co-O, Co O and Cl/Br-Co-Cl/Br units. These results can also become the basis for analysing their low-temperature spectral properties, which can help to understand the underlying physics of their exotic geometric frustration phenomena around phase transition temperatures.