Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the...Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed.In this paper we investigate a general double-RIS assisted multiple-input multiple-output(MIMO)wireless communication system under spatially correlated non line-of-sight propagation channels,where the cooperation of the double RISs is also considered.The design objective is to maximize the achievable ergodic rate based on full statistical channel state information(CSI).Specifically,we firstly present a closedform asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics.Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design.To further reduce the signal processing overhead and lower the complexity for practical realization,a common-phase scheme is proposed to design the double RISs.Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays.And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity.Furthermore,the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment.展开更多
基金supported in part by the Xi’an Jiaotong-Liverpool University(XJTLU)Research Development Fund(2024–2027)under Grant RDF-23-02-010supported in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2023A1515110732+5 种基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62071247supported in part by the Science and Technology Development Fund,Macao,China SAR under Grants 0087/2022/AFJ and 001/2024/SKLin part by the National Natural Science Foundation of China under Grant 62261160650in part by the Research Committee of University of Macao,Macao SAR,China under Grants MYRG-GRG2023-00116-FST-UMDF and MYRG2020-00095-FSTsupported in part by the NSFC under Grant 62261160576 and 62301148in part by the Fundamental Research Funds for the Central Universities under Grant 2242023K5003.
文摘Reconfigurable intelligent surface(RIS)is a novel meta-material which can form a smart radio environment by dynamically altering reflection directions of the impinging electromagnetic waves.In the prior literature,the inter-RIS links which also contribute to the performance of the whole system are usually neglected when multiple RISs are deployed.In this paper we investigate a general double-RIS assisted multiple-input multiple-output(MIMO)wireless communication system under spatially correlated non line-of-sight propagation channels,where the cooperation of the double RISs is also considered.The design objective is to maximize the achievable ergodic rate based on full statistical channel state information(CSI).Specifically,we firstly present a closedform asymptotic expression for the achievable ergodic rate by utilizing replica method from statistical physics.Then a full statistical CSI-enabled optimal design is proposed which avoids high pilot training overhead compared to instantaneous CSI-enabled design.To further reduce the signal processing overhead and lower the complexity for practical realization,a common-phase scheme is proposed to design the double RISs.Simulation results show that the derived asymptotic ergodic rate is quite accurate even for small-sized antenna arrays.And the proposed optimization algorithm can achieve substantial gain at the expense of a low overhead and complexity.Furthermore,the cooperative double-RIS assisted MIMO framework is proven to achieve superior ergodic rate performance and high communication reliability under harsh propagation environment.