Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un...Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process.展开更多
Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully re...Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully reversible anionic redox reactions to realize high capacity,high stability,and low voltage hysteresis for lithiumrich cathode materials.Therefore,it is critically important to comprehensively understand and control the anionic redox chemistry of lithium-rich cathode materials,including atomic structure design,and nano-scale materials engineering technologies.Herein,we summarize the recent research progress of lithium-rich cathode materials with a focus on redox chemistry.Particularly,we highlight the oxygen-based redox reactions in lithium-rich metal oxides,with critical views of designing next generation oxygen redox lithium cathode materials.Furthermore,we purposed the most promising strategies for improving the performances of lithium-rich cathode materials with a technology-spectrum from the atomic scale to nano-scale.展开更多
Plasma-based NO_(x) synthesis has been considered as a sustainable alternative to the conventional HaberBosch process.Despite the advancements in research achieved in recent years,limited attention has been paid to th...Plasma-based NO_(x) synthesis has been considered as a sustainable alternative to the conventional HaberBosch process.Despite the advancements in research achieved in recent years,limited attention has been paid to the reversible dimerization reaction of NO_(2) to N_(2)O_(4).This reaction can significantly alter the parameters considered with the process’output,such as the concentration or volume fraction of products and the energy consumption.This work aims to investigate the significance of dimerization through theoretical analysis and experimentation.Experiments were conducted with a 2D-gliding arc reactor to evaluate the influence of dimerization in the case of plasma reactor operation.It was observed that the dimerization reaction reached equilibrium in microseconds,resulting in a maximum hypothetical NO_(2) equilibrium conversion of 48.8%.For plasma experiments,the dimerization could cause a maximum error of 14.1%in product detection,which needs to be carefully considered along with the influence of temperature variations on the measurement.展开更多
Two different solvents had been used to separate benzene from 1-hexene under atmosphere pressure by employing one of the following two solvents, viz.: dimethyl sulfoxide (DMSO) at 298.15 K and 318.15 K, and furfural a...Two different solvents had been used to separate benzene from 1-hexene under atmosphere pressure by employing one of the following two solvents, viz.: dimethyl sulfoxide (DMSO) at 298.15 K and 318.15 K, and furfural at 298.15 K. A series of liquid-liquid equilibrium (LLE) data had been obtained and the distribution coefficient together with the separation factor were calculated from them. Both the NRTL and the UNIQUAC models could fit in with the experimental data quite well.展开更多
Graphene has been demonstrated to be able to detect individual gas molecules [Schedin et al. Nat. Mater. 6 (2007)652], which has attracted a lot of sensor research activities. Here we report for the first time that ...Graphene has been demonstrated to be able to detect individual gas molecules [Schedin et al. Nat. Mater. 6 (2007)652], which has attracted a lot of sensor research activities. Here we report for the first time that graphene is capable of detecting the ordering degree of absorbed water molecules. The efficiency of doping varies from the degrees of molecular ordering. The simulated results show that the highly ordered water molecules contribute more to the doping effect, which reduces the conductance of the water/graphene system.展开更多
文摘Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process.
基金financial support by the Australian Research Council(ARC)Discovery Project(DP200101249)。
文摘Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully reversible anionic redox reactions to realize high capacity,high stability,and low voltage hysteresis for lithiumrich cathode materials.Therefore,it is critically important to comprehensively understand and control the anionic redox chemistry of lithium-rich cathode materials,including atomic structure design,and nano-scale materials engineering technologies.Herein,we summarize the recent research progress of lithium-rich cathode materials with a focus on redox chemistry.Particularly,we highlight the oxygen-based redox reactions in lithium-rich metal oxides,with critical views of designing next generation oxygen redox lithium cathode materials.Furthermore,we purposed the most promising strategies for improving the performances of lithium-rich cathode materials with a technology-spectrum from the atomic scale to nano-scale.
基金supported by the NOW’s Prescient project(16271)the LEAP-AGRI project AFRICA。
文摘Plasma-based NO_(x) synthesis has been considered as a sustainable alternative to the conventional HaberBosch process.Despite the advancements in research achieved in recent years,limited attention has been paid to the reversible dimerization reaction of NO_(2) to N_(2)O_(4).This reaction can significantly alter the parameters considered with the process’output,such as the concentration or volume fraction of products and the energy consumption.This work aims to investigate the significance of dimerization through theoretical analysis and experimentation.Experiments were conducted with a 2D-gliding arc reactor to evaluate the influence of dimerization in the case of plasma reactor operation.It was observed that the dimerization reaction reached equilibrium in microseconds,resulting in a maximum hypothetical NO_(2) equilibrium conversion of 48.8%.For plasma experiments,the dimerization could cause a maximum error of 14.1%in product detection,which needs to be carefully considered along with the influence of temperature variations on the measurement.
基金the financial supports provided by the National Natural Science Foundation of China (No.21177038)
文摘Two different solvents had been used to separate benzene from 1-hexene under atmosphere pressure by employing one of the following two solvents, viz.: dimethyl sulfoxide (DMSO) at 298.15 K and 318.15 K, and furfural at 298.15 K. A series of liquid-liquid equilibrium (LLE) data had been obtained and the distribution coefficient together with the separation factor were calculated from them. Both the NRTL and the UNIQUAC models could fit in with the experimental data quite well.
基金Supported by the National Natural Science Foundation of China under Grant No 51271100, the National Basic Research Program of China under Grant No 2012CB825702, and the Special Funding in the Project of the Taishan Scholar Construction Engineering.
文摘Graphene has been demonstrated to be able to detect individual gas molecules [Schedin et al. Nat. Mater. 6 (2007)652], which has attracted a lot of sensor research activities. Here we report for the first time that graphene is capable of detecting the ordering degree of absorbed water molecules. The efficiency of doping varies from the degrees of molecular ordering. The simulated results show that the highly ordered water molecules contribute more to the doping effect, which reduces the conductance of the water/graphene system.