Bismuth-doped tin dioxide (BTO) nanometer powders were prepared by the wet chemical method using tin tetrachloride (SnCl4), bismuth nitrate [Bi(NO3) 3 ] and ammonia as raw materials. Non-bridge hydroxides and ca...Bismuth-doped tin dioxide (BTO) nanometer powders were prepared by the wet chemical method using tin tetrachloride (SnCl4), bismuth nitrate [Bi(NO3) 3 ] and ammonia as raw materials. Non-bridge hydroxides and capillary force between particles were found to be key factors causing hard aggregation of BTO through analyzing the formation mechanism of hard aggregation. The hard aggregation of BTO was eliminated effectively when the Bi-Sn precursor (BSP) was treated with post processing including dispersing with ultrasonic wave, refluxing and distilling with addition of n-butanol and benzene (DRD) and drying by microwave. Characterized with X-ray diffraction (XRD) and transmission electron microscopy (TEM), BTO spherical particles with tetragonal phase structure are well crystallized, dispersed easily and the average size was less than 10 nm.展开更多
Introduction Regenerative medicine holds great promise for the treatment of diseases that are unbeatable at present,such as various gene and neurological disorders,cardiovascular diseases,as well as hematological mali...Introduction Regenerative medicine holds great promise for the treatment of diseases that are unbeatable at present,such as various gene and neurological disorders,cardiovascular diseases,as well as hematological malignancies.Realization of this potential remains limited by current challenges associated with the control of cell phenotype and function in cell culture.In this respect,the fate of cells is dictated by the in vivo microenvironment where these cells interact with both the extracellular matrix(ECM)and with neighboring cells.The ECM serves as a structural support for cells and provides,in concert with spatio-temporally arranged biochemical cues such as soluble factors,topographical and mechanical cues that direct cell adhesion,spreading,migra-展开更多
Chemically modified clay(CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL(AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characteriz...Chemically modified clay(CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL(AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characterized by determining zero point of charge(p Hzpc), and using BET, SEM and FTIR. Then effects of operational parameters on adsorption of AGY-7GL were studied in a batch system. The effect of various parameters such as contact time(0-180 min), pH(2-8), temperature(293-323 K), CMC concentration(0.075-0.5 mg/L) and initial AGY-7GL concentration(75-250 mg/L) were investigated on the adsorption efficiency and capacity adsorption of CMC for the removal of AGY-7GL. Thermodynamic and kinetic parameters were calculated from the results of the adsorption experiment. The evaluation of kinetic models shows that this data best fits the pseudo-second-order model. It is determined that the adsorption equilibrium data works very well with the nonlinear Freundlich isotherm model. Thermodynamic parameters such as ?H^0(19.0 k J/mol), ?G^0(-28.8 k J/mol) and ?S^0(0.148 k J/mol) were also determined. According to the experimental results, it is concluded that CMC could be used as an alternative low cost potential adsorbent for the removal of AGY-7GL from wastewater.展开更多
Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechan...Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development.展开更多
Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia(Pongamia Pinnata),Madhuca(Madhuca Indica),and Jatropha(Jatropha curcas) were investigated in this study.The cellulose and lignin c...Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia(Pongamia Pinnata),Madhuca(Madhuca Indica),and Jatropha(Jatropha curcas) were investigated in this study.The cellulose and lignin contents of oil cakes play very important role in pyrolysis and combustion processes.A kinetic investigation of three oil cakes was carried out and major part of the samples decomposed between 210℃ and 500℃.Pyrolysis and combustion were carried out with the mixtures of cellulose and lignin chemicals in different ratios and compared with the oil cakes.The biomass with higher cellulose content showed faster rate of pyrolysis than the biomass with higher lignin content.However at higher temperatures(>600℃) all the oil cakes exhibited similar conversion at low heating rate in N2 atmosphere.Apparent activation energies increased for Madhuca and Pongamia oil cakes indicating the presence of more cellulose whereas,low activation energy of Jatropha confirms more lignin content.展开更多
Different mesoporous activated carbons were prepared by both chemical and physical activation processes and were examined for methane uptake in the presence of water.Methane isotherms were obtained at wet condition by...Different mesoporous activated carbons were prepared by both chemical and physical activation processes and were examined for methane uptake in the presence of water.Methane isotherms were obtained at wet condition by wetting samples with water at mass ratio of water/carbon(R) close to 1.0.To compare,the amount of methane storage were also measured at dry situation.The maximum amount of methane stored was attained as 237 V/V at R=1.0 by hydrate formation at the methane critical pressure.In the next step,mass ratios of water/carbon were changed to investigate various amount of water for methane storage enhancement.Two other values of mass ratio of water/carbon(R=0.8 and 1.4) were selected and methane isotherms were obtained at the same conditions.Maximum values of 210 and 248 V/V were reached for methane storage,respectively.It was also observed that,in the pressure range lower than hydrate pressure,by increasing water ratio the hydrate formation pressure was decreased and methane uptake was much less than that of dry condition due to pore filling by water.展开更多
The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collec...To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.展开更多
This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength o...This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78% and 43.55% higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78% and 52.07% higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.展开更多
Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, ...Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, before actual laboratory prototypes are woven and destructively tested. In this finite element study, the combined effects of individual ply orientations and material properties on the impact performance of multi-layered, non-stitched woven aramid fabrics are studied using 2-and 4-sided clamping configurations. Individual ply orientations of 0°, ±15°, ±30°, and ±45° are considered along with three levels of inter-yarn friction coefficient. Functionally graded fabric targets are also considered wherein the yarn stiffness progressively increases or decreases through the target thickness while keeping the yarn strain energy density constant and with all other material and architectural parameters unchanged for consistency. For each target configuration, one non-penetrating and one penetrating impact velocity is chosen. The impact performance is evaluated by the time taken to arrest the projectile and the backface deformation for the non-penetrating impacts, and by the residual velocity for the penetrating impact tests. All deterministic impact simulations are performed using LS-DYNA. 2-sided clamped targets and lower inter-yarn frictional levels generally resulted in better impact performance.The functionally graded targets generally showed either similar or inferior impact performance than the baseline fabric target configurations for the non-penetrating shots. Some performance improvements were observed for the penetrating shots when the yarn stiffness was progressively decreased through the layers in a direction away from the strike face, with additional performance enhancements achieved by simultaneously reducing the inter-yarn friction.展开更多
High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synth...High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.展开更多
Oil was extracted from seeds of Jatropha Curcas,in high yields(up to 40% by weight).The extracted Jatropha oil was converted in a laboratory reactor to biodiesel by transesterification.Analysis of Jatropha oil and Jat...Oil was extracted from seeds of Jatropha Curcas,in high yields(up to 40% by weight).The extracted Jatropha oil was converted in a laboratory reactor to biodiesel by transesterification.Analysis of Jatropha oil and Jatropha biodiesel by GC/MS and GC/SIMDIS showed that Jatropha oil could be readily converted to a biodiesel product through NaOH catalyzed transesterification.The resulting biodiesel has desirable properties such as high cetane number and low flash point,which are major improvements over the properties of commercial biodiesel fuels.展开更多
Combustion chamber modeling and simulation of the liquid propellant engine with kerosene as fuel and liquid oxygen as an oxidizer in the turbulent flow field are performed by CFD technique.The flow is modeled as Singl...Combustion chamber modeling and simulation of the liquid propellant engine with kerosene as fuel and liquid oxygen as an oxidizer in the turbulent flow field are performed by CFD technique.The flow is modeled as Single-phase in steady state and using RNG k-ε turbulence model.Simulation results are validated by experimental data of thrust,special impulse and combustion chamber pressure.By comparing t.^wo reaction models of finite rate chemistry and frozen model with experimental data,it is concluded that finite rate chemistry has acceptable results.The optimum value of equivalence ratio(oxidizer to fuel ratio)per reaction and operational parameters of the engine which maximize thrust and special impulse are determined.展开更多
The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succini...The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.展开更多
In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standa...In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standard for tensile test and then heated up to 830°C,kept for 4 h in an electric resistance furnace and then quenched in the mentioned media.Elastic modulus,yield strength,ultimate tensile strength,elongation,and modulus of toughness were determined according to the obtained stress?strain curves.Moreover,the hardness and microstructural evolution were investigated after the heat treatment at different media.The samples quenched in paraffin and CuO-doped paraffin are higher in ultimate tensile strength(1439 and 1306 MPa,respectively)than those quenched in water(1190 MPa)and air(1010 MPa).The highest hardness,with a value of HV 552,belonged to the sample quenched in CuO-doped paraffin.The microstructural studies revealed that the non-tempered steel had a ferrite/pearlite microstructure,while by quenching in water,paraffin and CuO-doped paraffin,ferrite/martensite microstructures were achieved.It is also observed that using the air as quenchant resulted in a three-phase bainite/martensite/ferrite microstructure.展开更多
文摘Bismuth-doped tin dioxide (BTO) nanometer powders were prepared by the wet chemical method using tin tetrachloride (SnCl4), bismuth nitrate [Bi(NO3) 3 ] and ammonia as raw materials. Non-bridge hydroxides and capillary force between particles were found to be key factors causing hard aggregation of BTO through analyzing the formation mechanism of hard aggregation. The hard aggregation of BTO was eliminated effectively when the Bi-Sn precursor (BSP) was treated with post processing including dispersing with ultrasonic wave, refluxing and distilling with addition of n-butanol and benzene (DRD) and drying by microwave. Characterized with X-ray diffraction (XRD) and transmission electron microscopy (TEM), BTO spherical particles with tetragonal phase structure are well crystallized, dispersed easily and the average size was less than 10 nm.
基金supported by the National Institute of Health(NIH HL83008)
文摘Introduction Regenerative medicine holds great promise for the treatment of diseases that are unbeatable at present,such as various gene and neurological disorders,cardiovascular diseases,as well as hematological malignancies.Realization of this potential remains limited by current challenges associated with the control of cell phenotype and function in cell culture.In this respect,the fate of cells is dictated by the in vivo microenvironment where these cells interact with both the extracellular matrix(ECM)and with neighboring cells.The ECM serves as a structural support for cells and provides,in concert with spatio-temporally arranged biochemical cues such as soluble factors,topographical and mechanical cues that direct cell adhesion,spreading,migra-
文摘Chemically modified clay(CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL(AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characterized by determining zero point of charge(p Hzpc), and using BET, SEM and FTIR. Then effects of operational parameters on adsorption of AGY-7GL were studied in a batch system. The effect of various parameters such as contact time(0-180 min), pH(2-8), temperature(293-323 K), CMC concentration(0.075-0.5 mg/L) and initial AGY-7GL concentration(75-250 mg/L) were investigated on the adsorption efficiency and capacity adsorption of CMC for the removal of AGY-7GL. Thermodynamic and kinetic parameters were calculated from the results of the adsorption experiment. The evaluation of kinetic models shows that this data best fits the pseudo-second-order model. It is determined that the adsorption equilibrium data works very well with the nonlinear Freundlich isotherm model. Thermodynamic parameters such as ?H^0(19.0 k J/mol), ?G^0(-28.8 k J/mol) and ?S^0(0.148 k J/mol) were also determined. According to the experimental results, it is concluded that CMC could be used as an alternative low cost potential adsorbent for the removal of AGY-7GL from wastewater.
文摘Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development.
文摘Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia(Pongamia Pinnata),Madhuca(Madhuca Indica),and Jatropha(Jatropha curcas) were investigated in this study.The cellulose and lignin contents of oil cakes play very important role in pyrolysis and combustion processes.A kinetic investigation of three oil cakes was carried out and major part of the samples decomposed between 210℃ and 500℃.Pyrolysis and combustion were carried out with the mixtures of cellulose and lignin chemicals in different ratios and compared with the oil cakes.The biomass with higher cellulose content showed faster rate of pyrolysis than the biomass with higher lignin content.However at higher temperatures(>600℃) all the oil cakes exhibited similar conversion at low heating rate in N2 atmosphere.Apparent activation energies increased for Madhuca and Pongamia oil cakes indicating the presence of more cellulose whereas,low activation energy of Jatropha confirms more lignin content.
基金Shahid Hashemi Nejad Gas refinery for supporting this project
文摘Different mesoporous activated carbons were prepared by both chemical and physical activation processes and were examined for methane uptake in the presence of water.Methane isotherms were obtained at wet condition by wetting samples with water at mass ratio of water/carbon(R) close to 1.0.To compare,the amount of methane storage were also measured at dry situation.The maximum amount of methane stored was attained as 237 V/V at R=1.0 by hydrate formation at the methane critical pressure.In the next step,mass ratios of water/carbon were changed to investigate various amount of water for methane storage enhancement.Two other values of mass ratio of water/carbon(R=0.8 and 1.4) were selected and methane isotherms were obtained at the same conditions.Maximum values of 210 and 248 V/V were reached for methane storage,respectively.It was also observed that,in the pressure range lower than hydrate pressure,by increasing water ratio the hydrate formation pressure was decreased and methane uptake was much less than that of dry condition due to pore filling by water.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.
文摘To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.
基金Supported by National Naturai Science Foundation of China (61273104, 61021002, 61104097), and Projects of Major Interna-tional (Regional) Joint Research Program National Natural Science Foundation of China (61120106010)
基金Universiti Putra Malaysia and Science and Technology Research Institute for Defence (STRIDE) for supporting the research activity
文摘This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78% and 43.55% higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78% and 52.07% higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.
基金support from the M.C.Gill Composites Center at the University of Southern California(USC)supported by the USC Center for High-Performance Computing(hpcc.usc.edu)
文摘Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, before actual laboratory prototypes are woven and destructively tested. In this finite element study, the combined effects of individual ply orientations and material properties on the impact performance of multi-layered, non-stitched woven aramid fabrics are studied using 2-and 4-sided clamping configurations. Individual ply orientations of 0°, ±15°, ±30°, and ±45° are considered along with three levels of inter-yarn friction coefficient. Functionally graded fabric targets are also considered wherein the yarn stiffness progressively increases or decreases through the target thickness while keeping the yarn strain energy density constant and with all other material and architectural parameters unchanged for consistency. For each target configuration, one non-penetrating and one penetrating impact velocity is chosen. The impact performance is evaluated by the time taken to arrest the projectile and the backface deformation for the non-penetrating impacts, and by the residual velocity for the penetrating impact tests. All deterministic impact simulations are performed using LS-DYNA. 2-sided clamped targets and lower inter-yarn frictional levels generally resulted in better impact performance.The functionally graded targets generally showed either similar or inferior impact performance than the baseline fabric target configurations for the non-penetrating shots. Some performance improvements were observed for the penetrating shots when the yarn stiffness was progressively decreased through the layers in a direction away from the strike face, with additional performance enhancements achieved by simultaneously reducing the inter-yarn friction.
基金Projects(ZR2013BL010,ZR2012DL05)supported by the Natural Science Foundation of Shandong Province,ChinaProject(4041412016)supported by the Research Excellence Award of Shandong University of Technology,ChinaProjects(2013GG03116,2011GG02115)supported by the Science and Technology Development Planning Project of Zibo,China
文摘High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.
文摘Oil was extracted from seeds of Jatropha Curcas,in high yields(up to 40% by weight).The extracted Jatropha oil was converted in a laboratory reactor to biodiesel by transesterification.Analysis of Jatropha oil and Jatropha biodiesel by GC/MS and GC/SIMDIS showed that Jatropha oil could be readily converted to a biodiesel product through NaOH catalyzed transesterification.The resulting biodiesel has desirable properties such as high cetane number and low flash point,which are major improvements over the properties of commercial biodiesel fuels.
文摘Combustion chamber modeling and simulation of the liquid propellant engine with kerosene as fuel and liquid oxygen as an oxidizer in the turbulent flow field are performed by CFD technique.The flow is modeled as Single-phase in steady state and using RNG k-ε turbulence model.Simulation results are validated by experimental data of thrust,special impulse and combustion chamber pressure.By comparing t.^wo reaction models of finite rate chemistry and frozen model with experimental data,it is concluded that finite rate chemistry has acceptable results.The optimum value of equivalence ratio(oxidizer to fuel ratio)per reaction and operational parameters of the engine which maximize thrust and special impulse are determined.
基金supported by the Institutional Research Grant(Thailand Research Fund:IRG598004)
文摘The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC.
文摘In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standard for tensile test and then heated up to 830°C,kept for 4 h in an electric resistance furnace and then quenched in the mentioned media.Elastic modulus,yield strength,ultimate tensile strength,elongation,and modulus of toughness were determined according to the obtained stress?strain curves.Moreover,the hardness and microstructural evolution were investigated after the heat treatment at different media.The samples quenched in paraffin and CuO-doped paraffin are higher in ultimate tensile strength(1439 and 1306 MPa,respectively)than those quenched in water(1190 MPa)and air(1010 MPa).The highest hardness,with a value of HV 552,belonged to the sample quenched in CuO-doped paraffin.The microstructural studies revealed that the non-tempered steel had a ferrite/pearlite microstructure,while by quenching in water,paraffin and CuO-doped paraffin,ferrite/martensite microstructures were achieved.It is also observed that using the air as quenchant resulted in a three-phase bainite/martensite/ferrite microstructure.