Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fi...Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fibrils(CEFs)as a class of deagglomerated binder for high-mass-loading electrodes.Derived from natural wood,CEF represents the most fundamental unit of cellulose with nanoscale diameter.The preparation of the CEFs involves the modulation of intermolecular hydrogen bonding by the treatment with a proton acceptor and a hydrotropic agent.This elementary deagglomeration of the cellulose fibers increases surface area and anionic charge density,thus promoting uniform dispersion with carbon conductive additives and suppressing interfacial side reactions at electrodes.Consequently,a homogeneous redox reaction is achieved throughout the electrodes.The resulting CEF-based cathode(overlithiated layered oxide(OLO)is chosen as a benchmark electrode active material)exhibits a high areal-mass-loading(50 mg cm^(-2),equivalent to an areal capacity of 12.5 mAh cm^(-2))and a high specific energy density(445.4 Wh kg–1)of a cell,which far exceeds those of previously reported OLO cathodes.This study highlights the viability of the deagglomerated binder in enabling sustainable high-mass-loading electrodes that are difficult to achieve with conventional synthetic polymer binders.展开更多
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t...In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.展开更多
Ni-rich layered oxides in lithium-ion batteries have problems with gas generation and electrochemical performance reduction due to residual lithium's reaction on the surface with the electrolyte.To address this is...Ni-rich layered oxides in lithium-ion batteries have problems with gas generation and electrochemical performance reduction due to residual lithium's reaction on the surface with the electrolyte.To address this issue,in this study,the Acid solvent evaporation(AsE)method has been proposed as a potential method to remove residual lithium while promoting the formation of a new LiNO_(3)-derived coating layer on the cathode surface.The reduction of residual lithium using the ASE method and the construction of a LiNO_(3)-derived coating layer suppresses gas evolution caused by the side effects of the electrolyte,improves electrochemical performance,and improves thermal stability by facilitating the smooth movement of lithium ions.Furthermore,the structural stability and resistance change due to the LiNO_(3)-derived coating layer effects is guaranteed through cycling and DCIR of the pouch cell.As a result,compared to Pristine,the capacity retention of coin cells increased by 8%after 100 cycles,and pouch cells increased by 25%after 160 cycles.In addition,after cycling the pouch cell,CO_(2) gas has significantly reduced by about 30%compared to Pristine using gas chromatography.The ASE method effectively forms a robust LiNO_(3)-derived coating layer on the cathode active material,which helps minimize electrolyte reactivity,suppress ,CO_(2) emissions,enhance surface structure stability,improve thermal stability,and improveoverallbatteryperformance.展开更多
Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical vers...Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.展开更多
基金supported by the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade,Industry and Energy of Korean government under grant No 23-CM-AI-08.
文摘Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fibrils(CEFs)as a class of deagglomerated binder for high-mass-loading electrodes.Derived from natural wood,CEF represents the most fundamental unit of cellulose with nanoscale diameter.The preparation of the CEFs involves the modulation of intermolecular hydrogen bonding by the treatment with a proton acceptor and a hydrotropic agent.This elementary deagglomeration of the cellulose fibers increases surface area and anionic charge density,thus promoting uniform dispersion with carbon conductive additives and suppressing interfacial side reactions at electrodes.Consequently,a homogeneous redox reaction is achieved throughout the electrodes.The resulting CEF-based cathode(overlithiated layered oxide(OLO)is chosen as a benchmark electrode active material)exhibits a high areal-mass-loading(50 mg cm^(-2),equivalent to an areal capacity of 12.5 mAh cm^(-2))and a high specific energy density(445.4 Wh kg–1)of a cell,which far exceeds those of previously reported OLO cathodes.This study highlights the viability of the deagglomerated binder in enabling sustainable high-mass-loading electrodes that are difficult to achieve with conventional synthetic polymer binders.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2022R1C1C1011058)。
文摘In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(2021R1F1A1055946)SolarEdge Technologies Korea(GCU-202203070002)。
文摘Ni-rich layered oxides in lithium-ion batteries have problems with gas generation and electrochemical performance reduction due to residual lithium's reaction on the surface with the electrolyte.To address this issue,in this study,the Acid solvent evaporation(AsE)method has been proposed as a potential method to remove residual lithium while promoting the formation of a new LiNO_(3)-derived coating layer on the cathode surface.The reduction of residual lithium using the ASE method and the construction of a LiNO_(3)-derived coating layer suppresses gas evolution caused by the side effects of the electrolyte,improves electrochemical performance,and improves thermal stability by facilitating the smooth movement of lithium ions.Furthermore,the structural stability and resistance change due to the LiNO_(3)-derived coating layer effects is guaranteed through cycling and DCIR of the pouch cell.As a result,compared to Pristine,the capacity retention of coin cells increased by 8%after 100 cycles,and pouch cells increased by 25%after 160 cycles.In addition,after cycling the pouch cell,CO_(2) gas has significantly reduced by about 30%compared to Pristine using gas chromatography.The ASE method effectively forms a robust LiNO_(3)-derived coating layer on the cathode active material,which helps minimize electrolyte reactivity,suppress ,CO_(2) emissions,enhance surface structure stability,improve thermal stability,and improveoverallbatteryperformance.
基金supported by the Basic Science Research Program (No.RS-2024-00344021) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planningthe financial support from the National Natural Science Foundation of China (52103277)+2 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (23HASTIT015)Natural Science Foundation of Henan Province (242300421073)supported by the Technology Innovation Program (20010960) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea)
文摘Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.