期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Influence of explosion parameters on wavelet packet frequency band energy distribution of blast vibration 被引量:15
1
作者 中国生 敖丽萍 赵奎 《Journal of Central South University》 SCIE EI CAS 2012年第9期2674-2680,共7页
Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of sh... Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of short-time non-stationary random signals, the wavelet packet energy spectrum analysis for blast vibration signal has made by wavelet packet analysis technology and the signals were measured under different explosion parameters (the maximal section dose, the distance of blast source to measuring point and the section number of millisecond detonator). The results show that more than 95% frequency band energy of the signals sl-s8 concentrates at 0-200 Hz and the main vibration frequency bands of the signals sl-s8 are 70.313-125, 46.875-93.75, 15.625-93.75, 0-62.5, 42.969-125, 15.625-82.031, 7.813-62.5 and 0-62.5 Hz. Energy distributions for different frequency bands of blast vibration signal are obtained and the characteristics of energy distributions for blast vibration signal measured under different explosion parameters are analyzed. From blast vibration signal energy, the decreasing law of blast seismic waves measured under different explosion parameters was studied and the wavelet packet analysis is an effective means for studying seismic effect induced by blast. 展开更多
关键词 blast vibration wavelet packet analysis explosion parameter energy distribution
在线阅读 下载PDF
Suppression of thermal postbuckling and nonlinear panel flutter motions of variable stiffness composite laminates using piezoelectric actuators 被引量:2
2
作者 TAO Ji-xiao YI Sheng-hui +1 位作者 DENG Ya-jie HE Xiao-qiao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3757-3777,共21页
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu... Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches. 展开更多
关键词 active control finite element method linear quadratic regulator algorithm nonlinear flutter thermal postbuckling variable stiffness composite laminates
在线阅读 下载PDF
Freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures 被引量:15
3
作者 ZHOU Zhong LIU Zhuang-zhuang +2 位作者 YANG Hao GAO Wen-yuan ZHANG Cheng-cheng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期554-565,共12页
As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-r... As a frequently-used roadbed filler,soil-rock mixture is often in the environment of freeze-thaw cycles and different confining pressures.In order to study the freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures,the concept of meso-interfacial freeze-thaw damage coefficient is put forward and the meso-interfacial damage phenomenon of soil-rock mixtures caused by the freeze-thaw cycle environment is concerned;a double-inclusion embedded model for elastic modulus of soil-rock mixtures in freezing-thawing cycle is proposed.A large triaxial test was performed and the influences of confining pressure and experimental factors on elastic modulus of soil-rock mixtures were obtained,and then the accuracy of the double-inclusion embedded model to predict the elastic modulus of soil-rock mixtures in freezing-thawing cycle is verified.Experiment results showed that as to soil-rock mixtures,with the increase of confining pressure,the elastic modulus increases approximately linearly.The most crucial factors to affect the elastic modulus are rock content and compaction degree at the same confining pressure;the elastic modulus increases with the increase of rock content and compactness;as the number of freeze-thaw cycles increases,the freeze-thaw damage coefficient of meso-structural interface and the elastic modulus decrease. 展开更多
关键词 soil-rock mixtures confining pressure freeze-thaw cycle elastic modulus damage coefficient
在线阅读 下载PDF
Damage mechanism of soil-rock mixture after freeze-thaw cycles 被引量:20
4
作者 ZHOU Zhong XING Kai +1 位作者 YANG Hao WANG Hao 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期13-24,共12页
As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the ... As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the damage mechanism is not clear.Based on the damage factor,the damage research of properties of soil-rock mixture after different times of freeze-thaw cycles is investigated.Firstly,the size-distributed subgrade gravelly soil samples are prepared and undergo different times of freeze-thaw cycles periodically(0,3,6,10),and indoor large-scale triaxial tests are completed.Secondly,the degradation degree of elastic modulus is considered as a damage factor,and applied to macro damage analysis of soil-rock mixture.Finally,the mesoscopic simulation of the experiments is achieved by PFC3D,and the influence on strength between soil-rock particles caused by freeze-thaw cycles is analyzed.The results show that freeze-thaw cycles cause internal damage of samples by weakening the strength between mesoscopic soil-rock particles,and ultimately affect the macro properties.After freeze-thaw cycles,on the macro-scale,elastic modulus and shear strength of soil-rock mixture both decrease,and the decreasing degree is related to the times of cycles with the mathmatical quadratic form;on the meso-scale,freeze-thaw cycles mainly cause the degradation of the strength between soil-rock particles whose properties are different significantly. 展开更多
关键词 soil-rock mixture freeze-thaw cycle large-scale triaxial test strength between soil-rock particles
在线阅读 下载PDF
Active earth pressure for subgrade retaining walls in cohesive backfills with tensile strength cut-off subjected to seepage effects
5
作者 FU He-lin WANG Cheng-yang LI Huan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2148-2159,共12页
The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the pred... The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the predicted tensile strength is reduced or eliminated. This work then presented a kinematical approach to evaluate the active earth pressure on subgrade retaining walls in cohesive backfills with saturated seepage effects. An effective rotational failure mechanism was constructed assuming an associative flow rule. The impact of seepage forces, whose distribution is described by a closed-form solution, was incorporated into the analysis. The thrust of active earth pressure was derived from the energy conservation equation, and an optimization program was then coded to obtain the most critical solution. Several sets of charts were produced to perform a parameter analysis. The results show that taking soil cohesion into account has a distinct beneficial influence on the stability of retaining walls, while seepage forces have an adverse effect. The active earth pressure increases when tensile strength cut-off is considered, and this increment is more noticeable under larger cohesion. 展开更多
关键词 active earth pressure seepage effect subgrade retaining wall tensile strength cut-off
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部