期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RELATIVE WIDTH OF SMOOTH CLASSES OF MULTIVARIATE PERIODIC FUNCTIONS WITH RESTRICTIONS ON ITERATED LAPLACE DERIVATIVES IN THE L_2-METRIC 被引量:1
1
作者 刘永平 杨连红 《Acta Mathematica Scientia》 SCIE CSCD 2006年第4期720-728,共9页
For two subsets W and V of a Banach space X, let Kn(W, V, X) denote the relative Kolmogorov n-width of W relative to V defined by Kn(W,V,X):=inf sup inf/Ln f∈W g∈V∩Ln‖f-g‖x, where the infimum is taken over ... For two subsets W and V of a Banach space X, let Kn(W, V, X) denote the relative Kolmogorov n-width of W relative to V defined by Kn(W,V,X):=inf sup inf/Ln f∈W g∈V∩Ln‖f-g‖x, where the infimum is taken over all n-dimensional linear subspaces Ln of X. Let W2(△^τ) denote the class of 2π-periodic functions f with d-variables satisfying ∫[-π, π]^d|△^τf(x)|^2dx≤1, while △^τ is the r-iterate of Laplace operator △. This article discusses the relative Kolmogorov n-width of W2(△^τ) relative to W2(△^τ) in Lq([-π, π]^d) (1≤ q ≤ ∞), and obtain its weak asymptotic result. 展开更多
关键词 Multivariate function classes WIDTH relative width
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部