Nowadays,new energy technologies are developing rapidly,energy storage systems are widely used,and lithium-ion batteries occupy a dominant position among them.Therefore,it is also very important to ensure their perfor...Nowadays,new energy technologies are developing rapidly,energy storage systems are widely used,and lithium-ion batteries occupy a dominant position among them.Therefore,it is also very important to ensure their performance,safety and service life through thermal management technology.In this paper,the causes of thermal runaway of lithium batteries are reviewed firstly,and three commonly used thermal management technologies,namely,air cooling,liquid cooling and phase change material cooling,are compared according to relevant literature in recent years.Air cooling technology has been widely studied because of its simple structure and low cost,but its temperature control effect is poor.Liquid cooling technology takes away heat through the circulation of liquid medium,which has a good cooling effect,but the system is relatively complex.Phase change material(PCM)cooling technology uses the high latent heat of PCM to absorb and re-lease heat,which can effectively reduce the peak temperature of a battery and improve the temperature uniformity,but the low thermal conductivity and liquid leakage are its main problems.To sum up,lithium-ion battery thermal management technology is moving towards a more efficient,safer and cost-effective direction.Coupled cooling systems,such as those combining liquid cooling and phase change material cooling,show great potential.Future research will continue to explore new materials and technologies to meet the growing demands of society and the market for lithium-ion battery perfor-mance and safety.展开更多
In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p...In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.展开更多
Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity a...Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance,highly efficient catalytic reduction systems containing sodium borohydride(NaBH_(4))and rare-earth chloride(RECl_(3))were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer,aiming to facilitate the conversion of chainend carboxyl groups into hydroxyl groups and improvement in end-group reactivity.To achieve this,lanthanum chloride(LaCl_(3)),cerium chloride(CeCl_(3)),and neodymium chloride(NdCl_(3))were used separately to form catalytic reduction systems with NaBH_(4).The effects of solvent dosage,reaction temperature,reaction time length,and reductant dosage on carboxylic conversion were investigated,and the molecular chain structure,molecular weight,and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy(FTIR),proton nuclear magnetic resonance(^(1)H-NMR),fluorine-19 nuclear magnetic resonance(^(19)F-NMR),gel permeation chromatography(GPC),and chemical titration.Moreover,the catalytic activity and selectivity of the rare-earth chlorides,as well as the corresponding underlying interactions were discussed.Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups,with a highest conversion up to 87.0%and differing catalytic reduction activities ranked as NaBH_(4)/CeCl_(3)>NaBH_(4)/LaCl_(3)>NaBH_(4)/NdCl_(3).Compared with the conventional lithium aluminum hydride(LiAIH_(4))reduction system,the NaBH_(4)/RECl_(3)systems provide multiple advantages such as mild reaction conditions,high conversion ratio with good selectivity,and environmental innocuity,and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials.展开更多
Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation...Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation of rectangular jacked pipes and the distribution of the earth pressure on jacked pipes,we present an analytical solution for predicting the vertical earth pressure on deep-buried rectangular pipe jacking tunnels,incorporating the tunnelling-induced ground loss distribution.Our proposed analytical model consists of the upper multi-layer parabolic soil arch and the lower friction arch.The key parameters(i.e.,width and height of friction arch B and height of parabolic soil arch H 1)are determined according to the existing research,and an analytical solution for K l is derived based on the distribution characteristics of the principal stress rotation angle.With consideration for the transition effect of the mechanical characteristics of the parabolic arch zone,an analytical solution for soil load transfer is derived.The prediction results of our analytical solution are compared with tests and simulation results to validate the effectiveness of the proposed analytical solution.Finally,the effects of different parameters on the soil pressure are discussed.展开更多
In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(...In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.展开更多
An adaptive approach to select analysis window param- eters for linear frequency modulated (LFM) signals is proposed to obtain the optimal 3 dB signal-to-noise ratio (SNR) in the short- time Fourier transform (S...An adaptive approach to select analysis window param- eters for linear frequency modulated (LFM) signals is proposed to obtain the optimal 3 dB signal-to-noise ratio (SNR) in the short- time Fourier transform (STFT) domain. After analyzing the instan- taneous frequency and instantaneous bandwidth to deduce the relation between the window length and deviation of the Gaus- sian window, high-order statistics is used to select the appropriate window length for STFT and get the optimal SNR with the right time-frequency resolution according to the signal characteristic under a fixed sampling rate. Computer simulations have verified the effectiveness of the new method.展开更多
A lot of routing algorithms have been proposed for low earth orbit(LEO) satellite IP networks in recent years,but most of them cannot achieve global optimization.The dynamic characters of LEO satellite networks are ...A lot of routing algorithms have been proposed for low earth orbit(LEO) satellite IP networks in recent years,but most of them cannot achieve global optimization.The dynamic characters of LEO satellite networks are reflected in two aspects:topology and traffic change.The algorithms mentioned above are "hard routing" which only realize local optimization.A distributed soft routing algorithm combined with multi-agent system(MASSR) is proposed.In MASSR,mobile agents are used to gather routing information actively,and blackboard is introduced to achieve direct information exchange between agents.MASSR provides traffic adaptive routing and tracks the change of LEO satellite network topology.The performance of ant colony optimization(ACO) and MASSR are compared in Iridium constellation,and MASSR presents better end-to-end delay as well as enhanced robustness.展开更多
In this paper,a series of new techniques are used to optimize typical laser scanning sensor.The integrated prototype is compared with traditional approach to demonstrate the much improved performance.In the research a...In this paper,a series of new techniques are used to optimize typical laser scanning sensor.The integrated prototype is compared with traditional approach to demonstrate the much improved performance.In the research and development,camera calibration is achieved by extracting characteristic points of the laser plane,so that the calibra- tion efficiency is improved significantly.With feedback control of its intensity,the laser is automatically adjusted for different material.A modified algorithm is presented to improve the accuracy of laser stripe extraction.The fusion of data extracted from left and right camera is completed with re-sampling technique.The scanner is integrated with a robot arm and some other machinery for on-line measurement and inspection,which provides a flexible measurement tool for reverse engineering.展开更多
An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medi...An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medium model established by Boer, while the pile is described by a beam vibration theory. By using separation theory of differential operator and variables to solve the dynamic governing equations for the soil, the fundamental solutions for the soil reactions on side and bottom of the pile are obtained. The dynamic impedance of the pile head is then derived by solving the vibration equation for the pile according to the compatibility condition between the pile and the soil. The proposed model is validated by comparing special cases of our model with the existing results. Numerical examples are presented to analyze the vibration characteristics of the pile.展开更多
To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are take...To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are taken by using a charge couple device(CCD) cinema with a macro lens,while the electrical and photo-electricity waveforms of the DBD are recorded.The current waveforms show that under an applied voltage of 3 kV,there are numerous short current pulses in both positive and negative half-periods of discharges.However,under 6 kV,there are still the numerous short current pulses in the positive half-periods,but only one wide current pulse in each negative half-period.This difference is also found in the photoelectric signals.The streamer,corona and glow discharges are observed from the images of the discharges at different applied voltages.The structure of glow discharge in the negative period is exactly the same as that of the low pressure glow discharge.However,in the positive period of discharge there is always a streamer.In the negative period of discharge,while the applied voltage increases,the transition from corona to glow discharge is observed.The progress of a transition between streamer and glow discharge at 6 kV during one period is analyzed.The glow discharge appearance is determined by two factors: the discharge current is limited to a certain extent by the dielectric layer; the charges deposited on the dielectric layer during the last half period enhance the intensity of the electric field.At an insufficient applied voltage,the cathode drop leads to no glow discharge,but Trichel pulses.展开更多
A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-w...A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-wave(SAR-RSW) element and an inverted-shorted-annular-ring reduced-surface-wave(ISAR-RSW)element. One key feature of the design is the proximity-coupled probe feeds to increase impedance bandwidth. The other is the defected ground structure band rejection filters to suppress the interaction effect between the SAR-RSW and the ISAR-RSW elements. In addition, trans-directional couplers are used to obtain tight coupling. Measurement results indicate that the antenna has a larger than 10 d B return loss bandwidth and a less than 3 d B axial-ratio(AR) bandwidth in the range of(1.164 – 1.255) GHz and(1.552 – 1.610) GHz. The gain of the passive antenna in the whole operating band is more than 7 d Bi.展开更多
The effect of hydroxyl radical(·OH) on microalgae in ballast water is experimentally investigated. An ?OH plasma generator, which has a thin plate discharge Ag electrode covered by two α-Al2 O3 dielectric layers...The effect of hydroxyl radical(·OH) on microalgae in ballast water is experimentally investigated. An ?OH plasma generator, which has a thin plate discharge Ag electrode covered by two α-Al2 O3 dielectric layers, is built. The plasma generator is filled with O2 and gaseous H2 O and is powered by a homemade power supply. ?OH radicals are generated by a series of plasma reactions and then dissolved into ballast water to kill microalgae. The maximum density of the killed microalgae is about 11 000 cells per milliliter. At this density, the microalgae are not reactivated at the 48th hour and the 120th hour in the treated ballast waters, and the content of chlorophyll in these microalgae decreases by 100%. The water quality returns to a normal level after 120 hours without secondary pollution of aquatic organisms and environment. These results show that the requirements of the D-2 ballast water discharge standard defined by the International Maritime Organization(IMO) are satisfied with the proposed treatment, and that ·OH is an ideal substance for killing microalgae during ballast water replacement of ships.展开更多
The mass organizing power is a distinctive feature of the Communist Party of China,an important criterion to test the nature of the proletarian party,and an essential condition to transform the Party’s organizational...The mass organizing power is a distinctive feature of the Communist Party of China,an important criterion to test the nature of the proletarian party,and an essential condition to transform the Party’s organizational advantages into strength superiority.In order to improve the mass organizing power,on the basis of giving full play to the traditional advantages,we’re required to carry out the mass line,and from the perspective of political construction,highlight political functions,strengthening work practices and organization system,taking advantage of technologies,promoting capacity,and intensifying the sense of responsibility,thus to provide a steady stream of power for the great rejuvenation of the Chinese nation.展开更多
The continuous debate on the formal rule of law and the substantive rule of law in the construction of the rule of law in China not only affects the understanding of the connotation of the rule of law in China,but als...The continuous debate on the formal rule of law and the substantive rule of law in the construction of the rule of law in China not only affects the understanding of the connotation of the rule of law in China,but also the choice of the path for the development of the rule of law in China.In the new stage of “comprehensively advancing the Law-Based Governance of China”,the process of “comprehensively advancing the Law-Based Governance of China” is also a process of continuously improving the rule of law quality in China.And from this perspective,the relationship between the formal rule of law and the substantive rule of law has got a new meaning.Promoting the substantive rule of law is an important way to realize the development of the rule of law and improve the quality of the rule of law.At the same time,the promotion of the substantive rule of law should follow the “people-centered” nature of the rule of law and the objective is conducive to the promotion of the rule of law and the formation of the “rule of law ecology”.展开更多
The international administrative theory is the essential tool of the international and regional integration,but it lacks macro reference of history. Based on the regional society system of ancient China,this paper dis...The international administrative theory is the essential tool of the international and regional integration,but it lacks macro reference of history. Based on the regional society system of ancient China,this paper discusses international administrative tools including countries,nations and people,and makes comparison of the economic capital,administrative organization and institutional norm of Europe,America and Asia. Through research,this paper concludes that the regional theory of China has both historic and practical significance.展开更多
基金supported by the National Natural Science Foundation of China(No.52001045).
文摘Nowadays,new energy technologies are developing rapidly,energy storage systems are widely used,and lithium-ion batteries occupy a dominant position among them.Therefore,it is also very important to ensure their performance,safety and service life through thermal management technology.In this paper,the causes of thermal runaway of lithium batteries are reviewed firstly,and three commonly used thermal management technologies,namely,air cooling,liquid cooling and phase change material cooling,are compared according to relevant literature in recent years.Air cooling technology has been widely studied because of its simple structure and low cost,but its temperature control effect is poor.Liquid cooling technology takes away heat through the circulation of liquid medium,which has a good cooling effect,but the system is relatively complex.Phase change material(PCM)cooling technology uses the high latent heat of PCM to absorb and re-lease heat,which can effectively reduce the peak temperature of a battery and improve the temperature uniformity,but the low thermal conductivity and liquid leakage are its main problems.To sum up,lithium-ion battery thermal management technology is moving towards a more efficient,safer and cost-effective direction.Coupled cooling systems,such as those combining liquid cooling and phase change material cooling,show great potential.Future research will continue to explore new materials and technologies to meet the growing demands of society and the market for lithium-ion battery perfor-mance and safety.
文摘In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.
文摘Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance,highly efficient catalytic reduction systems containing sodium borohydride(NaBH_(4))and rare-earth chloride(RECl_(3))were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer,aiming to facilitate the conversion of chainend carboxyl groups into hydroxyl groups and improvement in end-group reactivity.To achieve this,lanthanum chloride(LaCl_(3)),cerium chloride(CeCl_(3)),and neodymium chloride(NdCl_(3))were used separately to form catalytic reduction systems with NaBH_(4).The effects of solvent dosage,reaction temperature,reaction time length,and reductant dosage on carboxylic conversion were investigated,and the molecular chain structure,molecular weight,and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy(FTIR),proton nuclear magnetic resonance(^(1)H-NMR),fluorine-19 nuclear magnetic resonance(^(19)F-NMR),gel permeation chromatography(GPC),and chemical titration.Moreover,the catalytic activity and selectivity of the rare-earth chlorides,as well as the corresponding underlying interactions were discussed.Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups,with a highest conversion up to 87.0%and differing catalytic reduction activities ranked as NaBH_(4)/CeCl_(3)>NaBH_(4)/LaCl_(3)>NaBH_(4)/NdCl_(3).Compared with the conventional lithium aluminum hydride(LiAIH_(4))reduction system,the NaBH_(4)/RECl_(3)systems provide multiple advantages such as mild reaction conditions,high conversion ratio with good selectivity,and environmental innocuity,and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials.
基金Project(2022YJS073)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2024YFE0198500)supported by the National Key Research and Development Program of China:Intergovernmental International Science and Technology Innovation CooperationProject(U2469207)supported by the National Natural Science Foundation Railway Innovation and Development Joint Fund Project,China。
文摘Determining earth pressure on jacked pipes is essential for ensuring lining safety and calculating jacking force,especially for deep-buried pipes.To better reflect the soil arching effect resulting from the excavation of rectangular jacked pipes and the distribution of the earth pressure on jacked pipes,we present an analytical solution for predicting the vertical earth pressure on deep-buried rectangular pipe jacking tunnels,incorporating the tunnelling-induced ground loss distribution.Our proposed analytical model consists of the upper multi-layer parabolic soil arch and the lower friction arch.The key parameters(i.e.,width and height of friction arch B and height of parabolic soil arch H 1)are determined according to the existing research,and an analytical solution for K l is derived based on the distribution characteristics of the principal stress rotation angle.With consideration for the transition effect of the mechanical characteristics of the parabolic arch zone,an analytical solution for soil load transfer is derived.The prediction results of our analytical solution are compared with tests and simulation results to validate the effectiveness of the proposed analytical solution.Finally,the effects of different parameters on the soil pressure are discussed.
基金Project(2011CB013605)supported by the National Basic Research Development Program of China(973 Program)Projects(51178071,51008041)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0751)supported by the New Century Excellent Talents Program in University of Ministry of Education of China
文摘In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.
基金supported by the National Natural Science Foundation of China(6107313361175053+8 种基金6127236960975019)the Heilongjiang Postdoctoral Grant(LRB08362)the Fundamental Research Funds for the Central Universities of China(2011QN0272011QN1262012QN0302011ZD010)the Science and Technology Planning Project of Dalian City(2011A17GX0732010E15SF153)
文摘An adaptive approach to select analysis window param- eters for linear frequency modulated (LFM) signals is proposed to obtain the optimal 3 dB signal-to-noise ratio (SNR) in the short- time Fourier transform (STFT) domain. After analyzing the instan- taneous frequency and instantaneous bandwidth to deduce the relation between the window length and deviation of the Gaus- sian window, high-order statistics is used to select the appropriate window length for STFT and get the optimal SNR with the right time-frequency resolution according to the signal characteristic under a fixed sampling rate. Computer simulations have verified the effectiveness of the new method.
基金supported by the National Natural Science Foundation of China (60532030)
文摘A lot of routing algorithms have been proposed for low earth orbit(LEO) satellite IP networks in recent years,but most of them cannot achieve global optimization.The dynamic characters of LEO satellite networks are reflected in two aspects:topology and traffic change.The algorithms mentioned above are "hard routing" which only realize local optimization.A distributed soft routing algorithm combined with multi-agent system(MASSR) is proposed.In MASSR,mobile agents are used to gather routing information actively,and blackboard is introduced to achieve direct information exchange between agents.MASSR provides traffic adaptive routing and tracks the change of LEO satellite network topology.The performance of ant colony optimization(ACO) and MASSR are compared in Iridium constellation,and MASSR presents better end-to-end delay as well as enhanced robustness.
文摘In this paper,a series of new techniques are used to optimize typical laser scanning sensor.The integrated prototype is compared with traditional approach to demonstrate the much improved performance.In the research and development,camera calibration is achieved by extracting characteristic points of the laser plane,so that the calibra- tion efficiency is improved significantly.With feedback control of its intensity,the laser is automatically adjusted for different material.A modified algorithm is presented to improve the accuracy of laser stripe extraction.The fusion of data extracted from left and right camera is completed with re-sampling technique.The scanner is integrated with a robot arm and some other machinery for on-line measurement and inspection,which provides a flexible measurement tool for reverse engineering.
基金Projects(50809009,51578100) supported by the National Natural Science Foundation of ChinaProjects(3132014326,3132015095) supported by the Fundamental Research Funds for the Central Universities of China
文摘An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medium model established by Boer, while the pile is described by a beam vibration theory. By using separation theory of differential operator and variables to solve the dynamic governing equations for the soil, the fundamental solutions for the soil reactions on side and bottom of the pile are obtained. The dynamic impedance of the pile head is then derived by solving the vibration equation for the pile according to the compatibility condition between the pile and the soil. The proposed model is validated by comparing special cases of our model with the existing results. Numerical examples are presented to analyze the vibration characteristics of the pile.
基金supported by National High-tech Research and Development Program of China(863 Program)(2012AA062609)National Twelfth-five Year Science and Technology Supporting Program of China(2013BAC06B02)+1 种基金Special Fund for Marine Scientific Research in the Public Interest(201305027-5)Fundamental Research Fund for the Central Universities(3132013316)
文摘To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are taken by using a charge couple device(CCD) cinema with a macro lens,while the electrical and photo-electricity waveforms of the DBD are recorded.The current waveforms show that under an applied voltage of 3 kV,there are numerous short current pulses in both positive and negative half-periods of discharges.However,under 6 kV,there are still the numerous short current pulses in the positive half-periods,but only one wide current pulse in each negative half-period.This difference is also found in the photoelectric signals.The streamer,corona and glow discharges are observed from the images of the discharges at different applied voltages.The structure of glow discharge in the negative period is exactly the same as that of the low pressure glow discharge.However,in the positive period of discharge there is always a streamer.In the negative period of discharge,while the applied voltage increases,the transition from corona to glow discharge is observed.The progress of a transition between streamer and glow discharge at 6 kV during one period is analyzed.The glow discharge appearance is determined by two factors: the discharge current is limited to a certain extent by the dielectric layer; the charges deposited on the dielectric layer during the last half period enhance the intensity of the electric field.At an insufficient applied voltage,the cathode drop leads to no glow discharge,but Trichel pulses.
基金Project(52108363) supported by the National Natural Science Foundation of ChinaProjects(2021M700654, 2023T160074) supported by the Postdoctoral Research Foundation of China+2 种基金Project(TUL2022-01) supported by the Key Laboratory of Urban Underground Engineering of Ministry of Education,ChinaProject(XLYC1905015) supported by the Liaoning Revitalization Talents Program,ChinaProject(LJKZZ20220003) supported by the key Project of Liaoning Education Department,China。
基金supported by the National Natural Science Foundation of China(61071044)the Traffic Applied Basic Research Project of the Ministry of Transport of China(2010-329-225-030)+2 种基金the Doctor Startup Foundation of Liaoning Province(20141103)the Scientific Research Project of the Department of Education of Liaoning Province(L2013196)the Fundamental Research Funds for the Central Universities(2014YB05)
文摘A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-wave(SAR-RSW) element and an inverted-shorted-annular-ring reduced-surface-wave(ISAR-RSW)element. One key feature of the design is the proximity-coupled probe feeds to increase impedance bandwidth. The other is the defected ground structure band rejection filters to suppress the interaction effect between the SAR-RSW and the ISAR-RSW elements. In addition, trans-directional couplers are used to obtain tight coupling. Measurement results indicate that the antenna has a larger than 10 d B return loss bandwidth and a less than 3 d B axial-ratio(AR) bandwidth in the range of(1.164 – 1.255) GHz and(1.552 – 1.610) GHz. The gain of the passive antenna in the whole operating band is more than 7 d Bi.
基金Supported by National Natural Science Foundation of China (61273137, 51209026, 61074017), the Scientific Research Fund of Liaoning Provincial Education Department (L2013202), and the Fundamental Research Funds for the Central Universities (3132013037, 3132014047, 3132014321)
基金Project supported by National Natural Science Foundation of China(NSFC)for Distinguished Young Scholar(61025001)National Technology Support Project of China(2013BAC06B00)+1 种基金Special Fund for Marine Scientific Research in the Public Interest(201305027-5)Fundamental Research Fund for the Central Universities(3132013316)
文摘The effect of hydroxyl radical(·OH) on microalgae in ballast water is experimentally investigated. An ?OH plasma generator, which has a thin plate discharge Ag electrode covered by two α-Al2 O3 dielectric layers, is built. The plasma generator is filled with O2 and gaseous H2 O and is powered by a homemade power supply. ?OH radicals are generated by a series of plasma reactions and then dissolved into ballast water to kill microalgae. The maximum density of the killed microalgae is about 11 000 cells per milliliter. At this density, the microalgae are not reactivated at the 48th hour and the 120th hour in the treated ballast waters, and the content of chlorophyll in these microalgae decreases by 100%. The water quality returns to a normal level after 120 hours without secondary pollution of aquatic organisms and environment. These results show that the requirements of the D-2 ballast water discharge standard defined by the International Maritime Organization(IMO) are satisfied with the proposed treatment, and that ·OH is an ideal substance for killing microalgae during ballast water replacement of ships.
基金The research is supported by the foundation of National Social Science Planning Fund Project“Research on General Secretary Xi Jinping’s Thought of Ideals and Beliefs for Youth”(18BKS016).
文摘The mass organizing power is a distinctive feature of the Communist Party of China,an important criterion to test the nature of the proletarian party,and an essential condition to transform the Party’s organizational advantages into strength superiority.In order to improve the mass organizing power,on the basis of giving full play to the traditional advantages,we’re required to carry out the mass line,and from the perspective of political construction,highlight political functions,strengthening work practices and organization system,taking advantage of technologies,promoting capacity,and intensifying the sense of responsibility,thus to provide a steady stream of power for the great rejuvenation of the Chinese nation.
基金The phased achievements of the Major Project of National Social Science Fund of China“A Study on the Civil Law Spirit and the People-Centered Model of the Construction of Socialist Rule of Law Culture”(14ZDC022)
文摘The continuous debate on the formal rule of law and the substantive rule of law in the construction of the rule of law in China not only affects the understanding of the connotation of the rule of law in China,but also the choice of the path for the development of the rule of law in China.In the new stage of “comprehensively advancing the Law-Based Governance of China”,the process of “comprehensively advancing the Law-Based Governance of China” is also a process of continuously improving the rule of law quality in China.And from this perspective,the relationship between the formal rule of law and the substantive rule of law has got a new meaning.Promoting the substantive rule of law is an important way to realize the development of the rule of law and improve the quality of the rule of law.At the same time,the promotion of the substantive rule of law should follow the “people-centered” nature of the rule of law and the objective is conducive to the promotion of the rule of law and the formation of the “rule of law ecology”.
基金the staged achievement of 2013 key funded program of social science of Beijing--Countermeasure Study of the New Changes and Developmental Trend of the Asia-Pacific Strategy(13AGJ02)
文摘The international administrative theory is the essential tool of the international and regional integration,but it lacks macro reference of history. Based on the regional society system of ancient China,this paper discusses international administrative tools including countries,nations and people,and makes comparison of the economic capital,administrative organization and institutional norm of Europe,America and Asia. Through research,this paper concludes that the regional theory of China has both historic and practical significance.