Nickel and nickel-ceria catalysts supported on high surface area silica, with 6 wt% Ni and 20 wt% CeO2 were prepared by microwave assisted(co) precipitation method. The catalysts were investigated by XRD,TPR and XPS a...Nickel and nickel-ceria catalysts supported on high surface area silica, with 6 wt% Ni and 20 wt% CeO2 were prepared by microwave assisted(co) precipitation method. The catalysts were investigated by XRD,TPR and XPS analyses and they were tested in partial oxidation of methane(CPO). The catalytic reaction was carried out at atmospheric pressure in a temperature range of 400–800℃ with a feed gas mixture containing methane and oxygen in a molecular ratio CH4/O2=2. The Ni catalyst exhibited 60% methane conversion with 60% selectivity to CO already at 500℃. On the contrary, the Ni–Ce catalyst was inert to CPO up to 700℃. Moreover, the former catalyst reproduced its activity at the descending temperatures maintaining a good stability at 600℃, over a reaction time of 80 h, whereas the latter one completely deactivated. Test of CH4 temperature programmed surface reaction(CH4-TPSR) revealed a higher methane activation temperature(> 100℃) for the Ni–Ce catalyst as compared to the Ni one. Noticeable improvement of the ceria containing catalyst occurred when the reaction test started at a temperature higher than the methane decomposition temperature. In this case, the sample achieved the same catalytic behavior of the Ni catalyst. As confirmed by XPS analyses, the distinct electronic state of the supported nickel was responsible for the differences in catalytic behavior.展开更多
In a famous paper published in 1982, a very special class of gunshot residue particles(GSR) was named by Samarendra Basu "peeled orange", due to their particular structure, consisting of a barium/antimony co...In a famous paper published in 1982, a very special class of gunshot residue particles(GSR) was named by Samarendra Basu "peeled orange", due to their particular structure, consisting of a barium/antimony core covered by an outer lead leaflet. In this class of GSR particles the surface may show nodular structures of lead. Basu proposed an explanation in terms of a nucleus of antimony and barium that captures lead vapours produced after the explosion of a cartridge into a firearm: as solidification points of antimony and barium are close one another, both higher than solidification point of lead, he stated that lead occurs as a layer around the core in peeled orange GSR particles. In this paper we study the thermodynamic of the barium/antimony alloy and we hypothesize a formation process in terms of colloidal metal growth, charged particles and electrostatic attraction. We propose an updated model of formation for peeled orange GSR particles that explains the existence of outer lead leaflet and nodules in terms of electrostatic attraction of lead nanoparticles and instability of lead droplets.展开更多
Au-based catalysts have been reported to be active in the cyclohexane oxidation to K-A oil, but they showed some limitiations in terms of productivity, selectivity and required reaction conditions. The possibility to ...Au-based catalysts have been reported to be active in the cyclohexane oxidation to K-A oil, but they showed some limitiations in terms of productivity, selectivity and required reaction conditions. The possibility to overcome some of these limits has been explored coupling Au with Cu, which can be suitable for undergoing the electron-switch in the initial step of the cyclohexane oxidation. Hence, a bimetallic 2 wt% Au Cu/Al_(2)O_(3) catalyst was tested in the oxidation of cyclohexane, working at mild conditions of 120 ℃ and 4 bar of O_(2). The combination of the catalyst with a very small amount of benzaldehyde used as cheaper and non-toxic radical initiator allowed to obtain a very high productivity of cyclohexanol and cyclohexanone(45 mmol*m L/mgmet*h) with a selectivity of 94%. Moreover, comparing the catalysed reaction with the non-catalysed one, the role of the catalyst has been disclosed.展开更多
Information-Centric Networking(ICN) has recently emerged as a result of the increased demand to access contents regardless of their location in the network services. This new approach facilitates content distribution ...Information-Centric Networking(ICN) has recently emerged as a result of the increased demand to access contents regardless of their location in the network services. This new approach facilitates content distribution as a service of the network with lower delay and higher security in comparison with the current IP network. Applying ICN in current IP infrastructure leads to major complexities. One approach to deploy ICN with less complexity is to integrate ICN with Software Defined Networking(SDN). The SDN controller manages the content distribution, caching, and routing based on the users' requests. In this paper, we extend these context by addressing the ICN topology management problem over the SDN network to achieve an improved user experience as well as network performance. In particular, a centralized controller is designed to construct and manage the ICN overlay. Experimental results indicate that this adopted topology management strategy achieves high performance, in terms of low failure in interest satisfaction and reduced download time compared to a plain ICN.展开更多
Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmissi...Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA-/zgp-d, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mAgd for ethylene glycol and 1.84 mAfor glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW.cm-2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA.cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.展开更多
Chronic heart failure and depressive disorders have a high prevalence and incidence in the elderly. Several studies have shown how depression tends to exacerbate coexisting chronic heart failure and its clinical outco...Chronic heart failure and depressive disorders have a high prevalence and incidence in the elderly. Several studies have shown how depression tends to exacerbate coexisting chronic heart failure and its clinical outcomes and vice versa, especially in the elderly. The negative synergism between chronic heart failure and depression in the elderly may be approached only taking into account the multifaceted pathophysiological characteristics underlying both these conditions, such as behavioural factors, neurohormonal activation, inflammatory mediators, hypercoagulability and vascular damage. Nevertheless, the pathophysiological link between these two conditions is not well established yet. Despite the high prevalence of depression in chronic heart failure elderly patients and its negative prognostic value, it is often unrecognized especially because of shared symptoms. So the screening of mood disorders, using reliable questionnaires, is recommended in elderly patients with chronic heart failure, even if cannot substitute a diagnostic interview by mental health professionals. In this setting, treatment of depression requires a multidisciplinary approach including: psychotherapy, antidepressants, exercise training and electroconvulsive therapy. Pharmacological therapy with selective serotonin reuptake inhibitors, despite conflicting results, improves quality of life but does not guarantee better outcomes. Exercise training is effective in improving quality of life and prognosis but at the same time cardiac rehabilitation services are vastly underutilized.展开更多
Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine ...Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects.展开更多
In this paper,a low-pressure capacitively coupled plasma discharge sustained in an argonoxygen mixture was studied in order to evaluate its properties in terms of inactivation of Staphylococcus aureus.The plasma param...In this paper,a low-pressure capacitively coupled plasma discharge sustained in an argonoxygen mixture was studied in order to evaluate its properties in terms of inactivation of Staphylococcus aureus.The plasma parameters as electron temperature and plasma density were measured by the Langmuir probe(Ne≈1015 m^-3,Te≈1.5 eV),while the neutral atom density was in the range of 1021 m^-3.In the plasma phase,oxygen radicals were taken as reference of the reactive species with antimicrobial activity,and oxygen spectral lines,over a range of plasma process parameters,were investigated by the optical emission spectroscopy.Optimal plasma conditions were found,and a count reduction of 4 log in a few minutes of the bacterium proves the potentiality of an industrial grade plasma reactor as a sterilization agent.展开更多
Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existe...Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.展开更多
Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society.However,the true progress of the given technology is hindered by the sluggish and complex hydrogen evoluti...Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society.However,the true progress of the given technology is hindered by the sluggish and complex hydrogen evolution reaction(HER)occurring at the cathodic side of the system where overpriced and scarce Pt-based electrocatalysts are usually employed.Therefore,efficient platinum group metals(PGMs)-free electrocatalysts to carry out HER with accelerated kinetics are urgently demanded.In this scenario,molybdenum disulfide(MoS_(2))owing to efficacious structural attributes and optimum hydrogen-binding free energy(ΔG_(H*))is emerging as a reliable alternative to PGMs.However,the performance of MoS_(2)-based electrocatalysts is still far away from the benchmark performance.The HER activity of MoS_(2)can be improved by engineering the structural parameters i.e.,doping,defects inducement,modulating the electronic structure,stabilizing the 1 T phase,creating nanocomposites,and altering the morphologies using appropriate fabrication pathways.Here,we have comprehensively reviewed the majority of the scientific endeavors published in recent years to uplift the HER activity of MoS_(2)-based electrocatalysts using different methods.Advancements in the major fabrication strategies including hydrothermal synthesis methods,chemical vapor deposition,exfoliation techniques,plasma treatments,chemical methodologies,etc.to tune the structural parameters and hence their ultimate influence on the electrocatalytic activity in acidic and/or alkaline media have been thoroughly discussed.This study can provide encyclopedic insights about the fabrication routes that have been pursued to improve the HER performance of MoS_(2)-based electrocatalysts.展开更多
Herein,we report for the first time the synthesis of preformed bimetallic Pd-Rh nanoparticles with different Pd:Rh ratios(nominal molar ratio:80-20,60-40,40-60,20-80) and the corresponding Pd and Rh monometallic ones ...Herein,we report for the first time the synthesis of preformed bimetallic Pd-Rh nanoparticles with different Pd:Rh ratios(nominal molar ratio:80-20,60-40,40-60,20-80) and the corresponding Pd and Rh monometallic ones by sol immobilization using polyvinyl alcohol(PVA) as protecting agent and NaBH4 as reducing agent,using carbon nanofibers with high graphitization degree(HHT) as the desired support.The synthesized catalysts were characterized by means of Transmission Electron Microscopy(TEM) and inductively coupled plasma optical emission spectroscopy(ICP-OES).TEM shows that the average particle size of the Pd-Rh nanoparticles is the range of 3-4 nm,with the presence of few large agglomerated nanoparticles.For bimetallic catalysts,EDX-STEM analysis of individual nanoparticles demonstrated the presence of random-alloyed nanoparticles even in all cases Rh content is lower than the nominal one(calculated Pd:Rh molar ratio:90-10,69-31,49-51,40-60).The catalytic performance of the Pd-Rh catalysts was evaluated in the liquid phase dehydrogenation of formic acid to H2.It was found that Pd-Rh molar ratio strongly influences the catalytic performance.Pd-rich catalysts were more active than Rh-rich ones,with the highest activity observed for Pd90:Rh10(1792 h^(-1)),whereas Pd69:Rh31(921 h^(-1)) resulted the most stable during recycling tests.Finally,Pd90:Rh10 was chosen as a representative sample for the liquid-phase hydrogenation of muconic acid using formic acid as hydrogen donor,showing good yield to adipic acid.展开更多
NMR relaxation analysis provides a unique and non-invasive probe of fluid dynamics within porous materials,and may be applied to the interpretation of a wide variety of material and interfacial characteristics.Here,we...NMR relaxation analysis provides a unique and non-invasive probe of fluid dynamics within porous materials,and may be applied to the interpretation of a wide variety of material and interfacial characteristics.Here,we report two-dimensional^(1)H T_(1)-T_(2)relaxation correlation measurements of a range of three-carbon adsorbates(1-propanol,2-propanol and propanoic acid)imbibed within the mesoporous metal oxide gamma-alumina.Our data,acquired across field strengths of 2 MHz,12.7 MHz and 43 MHz,clearly reveal two populations in each measurement,identified as the alkyl and hydroxyl moieties of each adsorbate.These results expand the range of materials in which such functional group resolved relaxation is known to occur,and demonstrate the clear persistence of such phenomena using a range of typical benchtop NMR systems employed to study fluid-saturated porous media.展开更多
This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals ...This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals at the same time.The cogeneration processes in SOFC have been classified according to the different types of fuel.C_(2)and C_(3)alkenes and synthesis gas are the main cogenerated chemicals together with electricity.The chemicals and energy cogeneration in a fuel cell reactor seems to be an effective alternative to conventional reactors for only chemicals production and conventional fuel cells for only power production.Although,the use of SOFCs for chemicals and energy cogeneration has proved successful in the industrial setting,the development of new catalysts aimed at obtaining the desired chemicals together with the production of a high amount of energy,and optimizing SOFC operation conditions is still a challenge to enhance system performance and make commercial applications workable.展开更多
基金The Executive Programme for Cooperation between Italy and India (Prot.No.MAE01054762017)。
文摘Nickel and nickel-ceria catalysts supported on high surface area silica, with 6 wt% Ni and 20 wt% CeO2 were prepared by microwave assisted(co) precipitation method. The catalysts were investigated by XRD,TPR and XPS analyses and they were tested in partial oxidation of methane(CPO). The catalytic reaction was carried out at atmospheric pressure in a temperature range of 400–800℃ with a feed gas mixture containing methane and oxygen in a molecular ratio CH4/O2=2. The Ni catalyst exhibited 60% methane conversion with 60% selectivity to CO already at 500℃. On the contrary, the Ni–Ce catalyst was inert to CPO up to 700℃. Moreover, the former catalyst reproduced its activity at the descending temperatures maintaining a good stability at 600℃, over a reaction time of 80 h, whereas the latter one completely deactivated. Test of CH4 temperature programmed surface reaction(CH4-TPSR) revealed a higher methane activation temperature(> 100℃) for the Ni–Ce catalyst as compared to the Ni one. Noticeable improvement of the ceria containing catalyst occurred when the reaction test started at a temperature higher than the methane decomposition temperature. In this case, the sample achieved the same catalytic behavior of the Ni catalyst. As confirmed by XPS analyses, the distinct electronic state of the supported nickel was responsible for the differences in catalytic behavior.
文摘In a famous paper published in 1982, a very special class of gunshot residue particles(GSR) was named by Samarendra Basu "peeled orange", due to their particular structure, consisting of a barium/antimony core covered by an outer lead leaflet. In this class of GSR particles the surface may show nodular structures of lead. Basu proposed an explanation in terms of a nucleus of antimony and barium that captures lead vapours produced after the explosion of a cartridge into a firearm: as solidification points of antimony and barium are close one another, both higher than solidification point of lead, he stated that lead occurs as a layer around the core in peeled orange GSR particles. In this paper we study the thermodynamic of the barium/antimony alloy and we hypothesize a formation process in terms of colloidal metal growth, charged particles and electrostatic attraction. We propose an updated model of formation for peeled orange GSR particles that explains the existence of outer lead leaflet and nodules in terms of electrostatic attraction of lead nanoparticles and instability of lead droplets.
基金The Authors gratefully acknowledge the supportof bilateral project CNR-HAS(MTA)SAC.AD002.037.
文摘Au-based catalysts have been reported to be active in the cyclohexane oxidation to K-A oil, but they showed some limitiations in terms of productivity, selectivity and required reaction conditions. The possibility to overcome some of these limits has been explored coupling Au with Cu, which can be suitable for undergoing the electron-switch in the initial step of the cyclohexane oxidation. Hence, a bimetallic 2 wt% Au Cu/Al_(2)O_(3) catalyst was tested in the oxidation of cyclohexane, working at mild conditions of 120 ℃ and 4 bar of O_(2). The combination of the catalyst with a very small amount of benzaldehyde used as cheaper and non-toxic radical initiator allowed to obtain a very high productivity of cyclohexanol and cyclohexanone(45 mmol*m L/mgmet*h) with a selectivity of 94%. Moreover, comparing the catalysed reaction with the non-catalysed one, the role of the catalyst has been disclosed.
文摘Information-Centric Networking(ICN) has recently emerged as a result of the increased demand to access contents regardless of their location in the network services. This new approach facilitates content distribution as a service of the network with lower delay and higher security in comparison with the current IP network. Applying ICN in current IP infrastructure leads to major complexities. One approach to deploy ICN with less complexity is to integrate ICN with Software Defined Networking(SDN). The SDN controller manages the content distribution, caching, and routing based on the users' requests. In this paper, we extend these context by addressing the ICN topology management problem over the SDN network to achieve an improved user experience as well as network performance. In particular, a centralized controller is designed to construct and manage the ICN overlay. Experimental results indicate that this adopted topology management strategy achieves high performance, in terms of low failure in interest satisfaction and reduced download time compared to a plain ICN.
基金supported by the MATTM (Italy) for the PIRODE Project No 94the MSE for the PRIT Project Industria 2015the MIUR (Italy) for the FIRB 2010 Project RBFR10J4H7 002 and HYDROLAB2
文摘Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA-/zgp-d, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mAgd for ethylene glycol and 1.84 mAfor glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW.cm-2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA.cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.
文摘Chronic heart failure and depressive disorders have a high prevalence and incidence in the elderly. Several studies have shown how depression tends to exacerbate coexisting chronic heart failure and its clinical outcomes and vice versa, especially in the elderly. The negative synergism between chronic heart failure and depression in the elderly may be approached only taking into account the multifaceted pathophysiological characteristics underlying both these conditions, such as behavioural factors, neurohormonal activation, inflammatory mediators, hypercoagulability and vascular damage. Nevertheless, the pathophysiological link between these two conditions is not well established yet. Despite the high prevalence of depression in chronic heart failure elderly patients and its negative prognostic value, it is often unrecognized especially because of shared symptoms. So the screening of mood disorders, using reliable questionnaires, is recommended in elderly patients with chronic heart failure, even if cannot substitute a diagnostic interview by mental health professionals. In this setting, treatment of depression requires a multidisciplinary approach including: psychotherapy, antidepressants, exercise training and electroconvulsive therapy. Pharmacological therapy with selective serotonin reuptake inhibitors, despite conflicting results, improves quality of life but does not guarantee better outcomes. Exercise training is effective in improving quality of life and prognosis but at the same time cardiac rehabilitation services are vastly underutilized.
文摘Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects.
基金The research leading to these results is partly funded by the research agreement between Istituto di Fisica del Plasma and Kenosistec Srl(protocol CNR-IFP No.63,22/01/2018).
文摘In this paper,a low-pressure capacitively coupled plasma discharge sustained in an argonoxygen mixture was studied in order to evaluate its properties in terms of inactivation of Staphylococcus aureus.The plasma parameters as electron temperature and plasma density were measured by the Langmuir probe(Ne≈1015 m^-3,Te≈1.5 eV),while the neutral atom density was in the range of 1021 m^-3.In the plasma phase,oxygen radicals were taken as reference of the reactive species with antimicrobial activity,and oxygen spectral lines,over a range of plasma process parameters,were investigated by the optical emission spectroscopy.Optimal plasma conditions were found,and a count reduction of 4 log in a few minutes of the bacterium proves the potentiality of an industrial grade plasma reactor as a sterilization agent.
基金Project supported by the National Natural Science Foundation of China(Grants No.61202262)the Natural Science Foundation of Jiangsu Province,China(Grants No.BK2012328)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grants No.20120092120034)
文摘Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.
基金the Italian Ministry of University and Research(MUR)through the“Rita Levi Montalcini 2018”Fellowship(Grant number PGR18MAZLI)ENEA–UNIMIB PNRR agreement(Attività1.1.3 del PNRR POR H2)+1 种基金the Ministry of Science and Technology(State of Israel)and the Ministry of Foreign Affairs and International Cooperation–Directorate General for Cultural and Economic Promotion and Innovation(Italian Republic),respectively,within the bilateral project Italy-Israel(WE-CAT)the Italian ministry MUR for funding through the FISR 2019 project AMPERE(FISR2019_01294)。
文摘Hydrogen production via water electrolysis defines the novel energy vector for achieving a sustainable society.However,the true progress of the given technology is hindered by the sluggish and complex hydrogen evolution reaction(HER)occurring at the cathodic side of the system where overpriced and scarce Pt-based electrocatalysts are usually employed.Therefore,efficient platinum group metals(PGMs)-free electrocatalysts to carry out HER with accelerated kinetics are urgently demanded.In this scenario,molybdenum disulfide(MoS_(2))owing to efficacious structural attributes and optimum hydrogen-binding free energy(ΔG_(H*))is emerging as a reliable alternative to PGMs.However,the performance of MoS_(2)-based electrocatalysts is still far away from the benchmark performance.The HER activity of MoS_(2)can be improved by engineering the structural parameters i.e.,doping,defects inducement,modulating the electronic structure,stabilizing the 1 T phase,creating nanocomposites,and altering the morphologies using appropriate fabrication pathways.Here,we have comprehensively reviewed the majority of the scientific endeavors published in recent years to uplift the HER activity of MoS_(2)-based electrocatalysts using different methods.Advancements in the major fabrication strategies including hydrothermal synthesis methods,chemical vapor deposition,exfoliation techniques,plasma treatments,chemical methodologies,etc.to tune the structural parameters and hence their ultimate influence on the electrocatalytic activity in acidic and/or alkaline media have been thoroughly discussed.This study can provide encyclopedic insights about the fabrication routes that have been pursued to improve the HER performance of MoS_(2)-based electrocatalysts.
文摘Herein,we report for the first time the synthesis of preformed bimetallic Pd-Rh nanoparticles with different Pd:Rh ratios(nominal molar ratio:80-20,60-40,40-60,20-80) and the corresponding Pd and Rh monometallic ones by sol immobilization using polyvinyl alcohol(PVA) as protecting agent and NaBH4 as reducing agent,using carbon nanofibers with high graphitization degree(HHT) as the desired support.The synthesized catalysts were characterized by means of Transmission Electron Microscopy(TEM) and inductively coupled plasma optical emission spectroscopy(ICP-OES).TEM shows that the average particle size of the Pd-Rh nanoparticles is the range of 3-4 nm,with the presence of few large agglomerated nanoparticles.For bimetallic catalysts,EDX-STEM analysis of individual nanoparticles demonstrated the presence of random-alloyed nanoparticles even in all cases Rh content is lower than the nominal one(calculated Pd:Rh molar ratio:90-10,69-31,49-51,40-60).The catalytic performance of the Pd-Rh catalysts was evaluated in the liquid phase dehydrogenation of formic acid to H2.It was found that Pd-Rh molar ratio strongly influences the catalytic performance.Pd-rich catalysts were more active than Rh-rich ones,with the highest activity observed for Pd90:Rh10(1792 h^(-1)),whereas Pd69:Rh31(921 h^(-1)) resulted the most stable during recycling tests.Finally,Pd90:Rh10 was chosen as a representative sample for the liquid-phase hydrogenation of muconic acid using formic acid as hydrogen donor,showing good yield to adipic acid.
基金the Forrest Research Foundation.Carmine D’Agostino would like to acknowledge the EPSRC for grant no.EP/S019138/1.
文摘NMR relaxation analysis provides a unique and non-invasive probe of fluid dynamics within porous materials,and may be applied to the interpretation of a wide variety of material and interfacial characteristics.Here,we report two-dimensional^(1)H T_(1)-T_(2)relaxation correlation measurements of a range of three-carbon adsorbates(1-propanol,2-propanol and propanoic acid)imbibed within the mesoporous metal oxide gamma-alumina.Our data,acquired across field strengths of 2 MHz,12.7 MHz and 43 MHz,clearly reveal two populations in each measurement,identified as the alkyl and hydroxyl moieties of each adsorbate.These results expand the range of materials in which such functional group resolved relaxation is known to occur,and demonstrate the clear persistence of such phenomena using a range of typical benchtop NMR systems employed to study fluid-saturated porous media.
文摘This paper presents a review of low molecular weight alkane-fed solid oxide fuel cells(SOFCs),which,unlikely the conventional use of SOFCs for only power production,are utilized to cogenerate produce useful chemicals at the same time.The cogeneration processes in SOFC have been classified according to the different types of fuel.C_(2)and C_(3)alkenes and synthesis gas are the main cogenerated chemicals together with electricity.The chemicals and energy cogeneration in a fuel cell reactor seems to be an effective alternative to conventional reactors for only chemicals production and conventional fuel cells for only power production.Although,the use of SOFCs for chemicals and energy cogeneration has proved successful in the industrial setting,the development of new catalysts aimed at obtaining the desired chemicals together with the production of a high amount of energy,and optimizing SOFC operation conditions is still a challenge to enhance system performance and make commercial applications workable.