In the present study,molecular dynamic simulation(MD)was used to investigate the plastic deformation process of the Fe-Mn alloys with different Mn contents.The influences of Mn contents ranging from 10%to 30%(at%)on t...In the present study,molecular dynamic simulation(MD)was used to investigate the plastic deformation process of the Fe-Mn alloys with different Mn contents.The influences of Mn contents ranging from 10%to 30%(at%)on the deformation behavior and the controlling mechanism of the Fe-base alloys were analyzed.The results show that phase transformations and{112}<111>_(BCC)deformation twinning occur in all Fe-Mn alloys but follow different deformation paths.In the Fe-10%Mn alloy the deformation twinning mechanism obeys the FCC-related path,the Fe-20%Mn alloy involves both the FCC-and HCP-related paths,and the deformation of the Fe-30%Mn alloy is dominated by the HCP-related twinning path.The addition of Mn can increase the stacking fault energy and retard the activation of slip systems as well as the formation of stacking faults.Thus,a higher content of Mn can delay the FCC®ε-martensite and the subsequentε-martensite®BCC phase transition at the intersection of twoε-martensitic bands.Therefore,the addition of Mn alloying element increases the yield strength and reduces the elastic modulus of the Fe-Mn alloys.The formation of deformation twins will contribute to the work-hardening effect and delay the necking and fracture of alloys.It is expected that the results in the present study will provide theoretical reference for the design and optimization of high-performance steels.展开更多
How to mine valuable information from massive multisource heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the longterm dependence of air target intention...How to mine valuable information from massive multisource heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the longterm dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing,target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition,and is of significance to the commanders’ operational command and situation prediction.展开更多
An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential...An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential,as the loss of cached data requires access to data from external storage,which evidently increases the response latency.Typically,replication and erasure code(EC)are two fault-tolerant schemes that pose different trade-offs between access performance and storage usage.To help make the best performance and space trade-off,we design ElasticMem,a hybrid fault-tolerant distributed in-memory storage system that supports elastic redundancy transition to dynamically change the fault-tolerant scheme.ElasticMem exploits a novel EC-oriented replication(EOR)that carefully designs the data placement of replication according to the future data layout of EC to enhance the I/O efficiency of redundancy transition.ElasticMem solves the consistency problem caused by concurrent data accesses via a lightweight table-based scheme combined with data bypassing.It detects correlated read and write requests and serves subsequent read requests with local data.We implement a prototype that realizes ElasticMem based on Memcached.Experiments show that ElasticMem remarkably reduces the time of redundancy transition,the overall latency of correlated concurrent data accesses,and the latency of single data access among them.展开更多
With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixe...With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.展开更多
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl...In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios.展开更多
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base...[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.展开更多
Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication lin...Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks.展开更多
To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention predicti...To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention prediction model for drone formation targets in air combat.This model recognizes the intentions of multiple aerial targets by extracting spatial features among the targets at each moment.Simulation results demonstrate that,compared to classical intention recognition models,the proposed model in this paper achieves higher accuracy in identifying the intentions of drone swarm targets in air combat scenarios.展开更多
Device to device(D2 D) multi-hop communication in multicast networks solves the contradiction between high speed requirements and limited bandwidth in regional data sharing communication services. However, most networ...Device to device(D2 D) multi-hop communication in multicast networks solves the contradiction between high speed requirements and limited bandwidth in regional data sharing communication services. However, most networking models demand a large control overhead in eNodeB. Moreover, the topology should be calculated again due to the mobility of terminals, which causes the long delay. In this work, we model multicast network construction in D2 D communication through a fuzzy mathematics and game theory based algorithm. In resource allocation, we assume that user equipment(UE) can detect the available frequency and the fuzzy mathematics is introduced to describe an uncertain relationship between the resource and UE distributedly, which diminishes the time delay. For forming structure, a distributed myopic best response dynamics formation algorithm derived from a novel concept from the coalitional game theory is proposed, in which every UE can self-organize into stable structure without the control from eNodeB to improve its utilities in terms of rate and bit error rate(BER) while accounting for a link maintenance cost, and adapt this topology to environmental changes such as mobility while converging to a Nash equilibrium fast. Simulation results show that the proposed architecture converges to a tree network quickly and presents significant gains in terms of average rate utility reaching up to 50% compared to the star topology where all of the UE is directly connected to eNodeB.展开更多
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc...In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.展开更多
Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreg...Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.展开更多
An effective algorithm based on signal coverage of effective communication and local energy-consumption saving strategy is proposed for the application in wireless sensor networks.This algorithm consists of two sub-al...An effective algorithm based on signal coverage of effective communication and local energy-consumption saving strategy is proposed for the application in wireless sensor networks.This algorithm consists of two sub-algorithms.One is the multi-hop partition subspaces clustering algorithm for ensuring local energybalanced consumption ascribed to the deployment from another algorithm of distributed locating deployment based on efficient communication coverage probability(DLD-ECCP).DLD-ECCP makes use of the characteristics of Markov chain and probabilistic optimization to obtain the optimum topology and number of sensor nodes.Through simulation,the relative data demonstrate the advantages of the proposed approaches on saving hardware resources and energy consumption of networks.展开更多
Focused on the Klinkenberg effect on gas seepage, the independently developed triaxial experimental system of gas seepage was applied to conduct research on the seepage characteristics of coal seam gas. By means of ex...Focused on the Klinkenberg effect on gas seepage, the independently developed triaxial experimental system of gas seepage was applied to conduct research on the seepage characteristics of coal seam gas. By means of experimental data analysis and theoretical derivation, a calculation method of coal seam gas permeability was proposed, which synthesized the respective influences of gas dynamic viscosity, compressibility factor and Klinkenberg effect. The study results show that the Klinkenberg effect has a significant influence on the coal seam gas seepage, the permeability estimated with the method considering the Klinkenberg effect is correct, and this permeability can fully reflect the true seepage state of the gas. For the gas around the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability may be ignored. For the gas deviating far away from the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability must be considered. The research results have certain guiding significance in forming a correct understanding of the Klinkenberg effect and selecting a more accurate calculation method for the permeability of coal containing gas.展开更多
Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time o...Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.展开更多
Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color...Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.展开更多
In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts mor...In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.展开更多
A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of t...A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).展开更多
基金Project(51901248)supported by the National Natural Science Foundation of ChinaProject(2023JJ40742)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the present study,molecular dynamic simulation(MD)was used to investigate the plastic deformation process of the Fe-Mn alloys with different Mn contents.The influences of Mn contents ranging from 10%to 30%(at%)on the deformation behavior and the controlling mechanism of the Fe-base alloys were analyzed.The results show that phase transformations and{112}<111>_(BCC)deformation twinning occur in all Fe-Mn alloys but follow different deformation paths.In the Fe-10%Mn alloy the deformation twinning mechanism obeys the FCC-related path,the Fe-20%Mn alloy involves both the FCC-and HCP-related paths,and the deformation of the Fe-30%Mn alloy is dominated by the HCP-related twinning path.The addition of Mn can increase the stacking fault energy and retard the activation of slip systems as well as the formation of stacking faults.Thus,a higher content of Mn can delay the FCC®ε-martensite and the subsequentε-martensite®BCC phase transition at the intersection of twoε-martensitic bands.Therefore,the addition of Mn alloying element increases the yield strength and reduces the elastic modulus of the Fe-Mn alloys.The formation of deformation twins will contribute to the work-hardening effect and delay the necking and fracture of alloys.It is expected that the results in the present study will provide theoretical reference for the design and optimization of high-performance steels.
基金supported by the National Natural Science Foundation of China (61502523)。
文摘How to mine valuable information from massive multisource heterogeneous data and identify the intention of aerial targets is a major research focus at present. Aiming at the longterm dependence of air target intention recognition, this paper deeply explores the potential attribute features from the spatiotemporal sequence data of the target. First, we build an intelligent dynamic intention recognition framework, including a series of specific processes such as data source, data preprocessing,target space-time, convolutional neural networks-bidirectional gated recurrent unit-atteneion (CBA) model and intention recognition. Then, we analyze and reason the designed CBA model in detail. Finally, through comparison and analysis with other recognition model experiments, our proposed method can effectively improve the accuracy of air target intention recognition,and is of significance to the commanders’ operational command and situation prediction.
基金supported by the Fundamental Research Funds for the Central Universities(WK2150110022)Anhui Provincial Natural Science Foundation(2208085QF189)National Natural Science Foundation of China(62202440).
文摘An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential,as the loss of cached data requires access to data from external storage,which evidently increases the response latency.Typically,replication and erasure code(EC)are two fault-tolerant schemes that pose different trade-offs between access performance and storage usage.To help make the best performance and space trade-off,we design ElasticMem,a hybrid fault-tolerant distributed in-memory storage system that supports elastic redundancy transition to dynamically change the fault-tolerant scheme.ElasticMem exploits a novel EC-oriented replication(EOR)that carefully designs the data placement of replication according to the future data layout of EC to enhance the I/O efficiency of redundancy transition.ElasticMem solves the consistency problem caused by concurrent data accesses via a lightweight table-based scheme combined with data bypassing.It detects correlated read and write requests and serves subsequent read requests with local data.We implement a prototype that realizes ElasticMem based on Memcached.Experiments show that ElasticMem remarkably reduces the time of redundancy transition,the overall latency of correlated concurrent data accesses,and the latency of single data access among them.
基金Supported by the National Natural Science Foundation of China(12201368,62376252)Key Project of Natural Science Foundation of Zhejiang Province(LZ22F030003)Zhejiang Province Leading Geese Plan(2024C02G1123882,2024C01SA100795).
文摘With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.
文摘In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios.
文摘[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.
基金supported by the National Key Research and Development Program of China(2024YFB4504500)Shanghai Collaborative Innovation Project(24xtcx00500).
文摘Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks.
文摘To address the issue of neglecting scenarios involving joint operations and collaborative drone swarm operations in air combat target intent recognition.This paper proposes a transfer learning-based intention prediction model for drone formation targets in air combat.This model recognizes the intentions of multiple aerial targets by extracting spatial features among the targets at each moment.Simulation results demonstrate that,compared to classical intention recognition models,the proposed model in this paper achieves higher accuracy in identifying the intentions of drone swarm targets in air combat scenarios.
基金Supported by National Natural Science Foundation of China (60496322), Natural Science Foundation of Beijing (4083034), and Scientific Research Common Program of Beijing Municipal Commission.of Education (KM200610005020)_ _ _
基金supported by the National Science and Technology Major Project of China(2013ZX03005007-004)the National Natural Science Foundation of China(6120101361671179)
文摘Device to device(D2 D) multi-hop communication in multicast networks solves the contradiction between high speed requirements and limited bandwidth in regional data sharing communication services. However, most networking models demand a large control overhead in eNodeB. Moreover, the topology should be calculated again due to the mobility of terminals, which causes the long delay. In this work, we model multicast network construction in D2 D communication through a fuzzy mathematics and game theory based algorithm. In resource allocation, we assume that user equipment(UE) can detect the available frequency and the fuzzy mathematics is introduced to describe an uncertain relationship between the resource and UE distributedly, which diminishes the time delay. For forming structure, a distributed myopic best response dynamics formation algorithm derived from a novel concept from the coalitional game theory is proposed, in which every UE can self-organize into stable structure without the control from eNodeB to improve its utilities in terms of rate and bit error rate(BER) while accounting for a link maintenance cost, and adapt this topology to environmental changes such as mobility while converging to a Nash equilibrium fast. Simulation results show that the proposed architecture converges to a tree network quickly and presents significant gains in terms of average rate utility reaching up to 50% compared to the star topology where all of the UE is directly connected to eNodeB.
基金supported by the National Natural Science Foundation of China(5110505261173163)the Liaoning Provincial Natural Science Foundation of China(201102037)
文摘In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.
基金Project(61701060)supported by the National Natural Science Foundation of China。
文摘Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background.
基金supported by the Major State Basic Research Program of China(B1420080204)National Science Fund for Distinguished Young Scholars(60725415)the National Natural Science Foundation of China(60606006)
文摘An effective algorithm based on signal coverage of effective communication and local energy-consumption saving strategy is proposed for the application in wireless sensor networks.This algorithm consists of two sub-algorithms.One is the multi-hop partition subspaces clustering algorithm for ensuring local energybalanced consumption ascribed to the deployment from another algorithm of distributed locating deployment based on efficient communication coverage probability(DLD-ECCP).DLD-ECCP makes use of the characteristics of Markov chain and probabilistic optimization to obtain the optimum topology and number of sensor nodes.Through simulation,the relative data demonstrate the advantages of the proposed approaches on saving hardware resources and energy consumption of networks.
基金Projects(51104059,51204067)supported by the National Natural Science Foundation of ChinaProject(2012CB723103)supported the National Basic Research Program of China+3 种基金Project(IRT1235)supported by Innovation Team Development Plan of the Ministry of Education of ChinaProject(2013M531674)supported by China Postdoctoral Science FoundationProject(132300413203)supported by Basic and Frontier Technology Research Program of Henan Province,ChinaProject(WS2012B07)supported by the Open Project of State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University),China
文摘Focused on the Klinkenberg effect on gas seepage, the independently developed triaxial experimental system of gas seepage was applied to conduct research on the seepage characteristics of coal seam gas. By means of experimental data analysis and theoretical derivation, a calculation method of coal seam gas permeability was proposed, which synthesized the respective influences of gas dynamic viscosity, compressibility factor and Klinkenberg effect. The study results show that the Klinkenberg effect has a significant influence on the coal seam gas seepage, the permeability estimated with the method considering the Klinkenberg effect is correct, and this permeability can fully reflect the true seepage state of the gas. For the gas around the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability may be ignored. For the gas deviating far away from the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability must be considered. The research results have certain guiding significance in forming a correct understanding of the Klinkenberg effect and selecting a more accurate calculation method for the permeability of coal containing gas.
基金supported by the National Natural Science Foundation of China(6120235461272422)the Scientific and Technological Support Project(Industry)of Jiangsu Province(BE2011189)
文摘Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.
基金Projects(61370200,61672130,61602082) supported by the National Natural Science Foundation of ChinaProject(1721203049-1) supported by the Science and Technology Research and Development Plan Project of Handan,Hebei Province,China
文摘Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.
基金supported by the National Natural Science Foundation of China (6087309960775013)
文摘In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.
基金supported by the National Natural Science Foundation of China(61771369 61775219+5 种基金 61640422)the Fundamental Research Funds for the Central Universities(JB180310)the Equipment Research Program of the Chinese Academy of Sciences(YJKYYQ20180039)the Shaanxi Provincial Key R&D Program(2018SF-409 2018ZDXM-SF-027)the Natural Science Basic Research Plan
文摘A near-field three-dimensional(3 D)imaging method combining multichannel joint sparse recovery(MJSR)and fast Gaussian gridding nonuniform fast Fourier transform(FGGNUFFT)is proposed,based on a perfect combination of the compressed sensing(CS)theory and the matched filtering(MF)technique.The approach has the advantages of high precision and high efficiency:multichannel joint sparse constraint is adopted to improve the problem that the images recovered by the single channel imaging algorithms do not necessarily share the same positions of the scattering centers;the CS dictionary is constructed by combining MF and FGG-NUFFT,so as to improve the imaging efficiency and memory requirement.Firstly,a near-field 3 D imaging model of joint sparse recovery is constructed by combining the MF-based imaging method.Secondly,FGG-NUFFT and reverse FGG-NUFFT are used to replace the interpolation and Fourier transform in MF-based imaging methods,and a sensing matrix with high precision and high efficiency is constructed according to the traditional imaging process.Thirdly,a fast imaging recovery is performed by using the improved separable surrogate functionals(SSF)optimization algorithm,only with matrix and vector multiplication.Finally,a 3 D imagery of the near-field target is obtained by using both the horizontal and the pitching interferometric phase information.This paper contains two imaging models,the only difference is the sub-aperture method used in inverse synthetic aperture radar(ISAR)imaging.Compared to traditional CS-based imaging methods,the proposed method includes both forward transform and inverse transform in each iteration,which improves the quality of reconstruction.The experimental results show that,the proposed method improves the imaging accuracy by about O(10),accelerates the imaging speed by five times and reduces the memory usage by about O(10~2).
基金supported by the National Natural Science Foundation of China(6113900261501229+1 种基金11547040)the Guangdong Natural Science Foundation(2016A030310051)