In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with ...In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with an intensified charge-coupled device and photomultiplier tubes.The results indicate that the bright and dark concentric-ring pattern is composed of three concentric-ring sublattices.These are bright concentric-ring structures,dark concentric-ring structures and wider concentric-ring structures,respectively.The bright concentric-ring structures and dark concentricring structures are alternately distributed.The bright concentric-ring structures are located at the centre of the wider concentric-ring structures.The wider concentric-ring structures first form from the outer edge and gradually develop to the centre.The essence of all three concentric-ring structures is the individual discharge filaments.The optical emission spectra of different sublattices are acquired and analysed.It is found that the plasma parameters of the three concentricring sublattices are different.Finally,the formation mechanism of the bright and dark concentricring pattern is discussed.展开更多
Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fi...Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites.展开更多
A honeycomb-Kagome hexagonal superlattice pattern with dark discharges is observed in a dielectric barrier discharge system for the first time.The spatiotemporal structure of the honeycomb-Kagome hexagonal superlattic...A honeycomb-Kagome hexagonal superlattice pattern with dark discharges is observed in a dielectric barrier discharge system for the first time.The spatiotemporal structure of the honeycomb-Kagome hexagonal superlattice pattern with dark discharges is investigated by an intensified charge-coupled device and the photomultipliers show that it is an interleaving of three different sub-lattices,which are bright-spot,invisible honeycomb lattice,and Kagome lattice with invisible frameworks and dim-spots,respectively.The invisible honeycomb lattices and Kagome lattices are actually composed of dark discharges.By using the optical emission spectra method,it is found that the plasma parameters of the three different sub-lattices are different.The influence of the dark discharges on pattern formation is discussed.The results may have significance for the investigation of the dark discharges and will accelerate the development of self-organized pattern dynamics.展开更多
Monte Carlo simulation is applied to investigate the off-axis effect in keel-edge pinhole single photon emission computed tomography imaging. Aiming at finding the effective field of view (FOV) for imaging, we simul...Monte Carlo simulation is applied to investigate the off-axis effect in keel-edge pinhole single photon emission computed tomography imaging. Aiming at finding the effective field of view (FOV) for imaging, we simulate point source in off-axis imaging (0, 4, 8 and 12ram from the central rotation axis) of different collimator designs (channel height with 1.38, 1 and 0.5mm) with a fixed aperture diameter. Tradeoff curves of rms resolution and sensitivity are plotted to determine the effective FOV for different channel height pinhole collimators. The parameterized model can be further incorporated into image reconstruction algorithms, which compensates for the off-axis effect and is used as a reference for multi-pinhole design.展开更多
基金supported by National Natural Science Foundation of China(No.12075075)the Natural Science Foundation of Hebei Province,China(Nos.2020201016,A2018201154,A2023201012)Scientific Research and Innovation Team of Hebei University(No.IT2023B03)。
文摘In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with an intensified charge-coupled device and photomultiplier tubes.The results indicate that the bright and dark concentric-ring pattern is composed of three concentric-ring sublattices.These are bright concentric-ring structures,dark concentric-ring structures and wider concentric-ring structures,respectively.The bright concentric-ring structures and dark concentricring structures are alternately distributed.The bright concentric-ring structures are located at the centre of the wider concentric-ring structures.The wider concentric-ring structures first form from the outer edge and gradually develop to the centre.The essence of all three concentric-ring structures is the individual discharge filaments.The optical emission spectra of different sublattices are acquired and analysed.It is found that the plasma parameters of the three concentricring sublattices are different.Finally,the formation mechanism of the bright and dark concentricring pattern is discussed.
基金Supported by the Natural Science Foundation of Hebei Province under Grant No E2012201084the National University Students’ Innovative Training Program under Grant No 201410075004
文摘Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites.
基金supported by National Natural Science Foundation of China(No.12075075)Natural Science Foundation of Hebei Province,China(Nos.2020201016 and A2018201154).
文摘A honeycomb-Kagome hexagonal superlattice pattern with dark discharges is observed in a dielectric barrier discharge system for the first time.The spatiotemporal structure of the honeycomb-Kagome hexagonal superlattice pattern with dark discharges is investigated by an intensified charge-coupled device and the photomultipliers show that it is an interleaving of three different sub-lattices,which are bright-spot,invisible honeycomb lattice,and Kagome lattice with invisible frameworks and dim-spots,respectively.The invisible honeycomb lattices and Kagome lattices are actually composed of dark discharges.By using the optical emission spectra method,it is found that the plasma parameters of the three different sub-lattices are different.The influence of the dark discharges on pattern formation is discussed.The results may have significance for the investigation of the dark discharges and will accelerate the development of self-organized pattern dynamics.
文摘Monte Carlo simulation is applied to investigate the off-axis effect in keel-edge pinhole single photon emission computed tomography imaging. Aiming at finding the effective field of view (FOV) for imaging, we simulate point source in off-axis imaging (0, 4, 8 and 12ram from the central rotation axis) of different collimator designs (channel height with 1.38, 1 and 0.5mm) with a fixed aperture diameter. Tradeoff curves of rms resolution and sensitivity are plotted to determine the effective FOV for different channel height pinhole collimators. The parameterized model can be further incorporated into image reconstruction algorithms, which compensates for the off-axis effect and is used as a reference for multi-pinhole design.