A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bo...A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bouce Wen model, but also determines its corresponding parameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.展开更多
This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derive...This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agree- ments between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.展开更多
A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching a...A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study.展开更多
The notch tip fracture criterion of cored liner is proposed based on a dislocation model. The analysis reveals that the ductile shear fracture is a dominant fracture mode in the scored liner, and the fracture path is ...The notch tip fracture criterion of cored liner is proposed based on a dislocation model. The analysis reveals that the ductile shear fracture is a dominant fracture mode in the scored liner, and the fracture path is along the maximum shear stress tracing line. The numerical simulation of fracture process of scored liner under explosive loading is performed using the nonlinear finite element analysis program ANSYS-LS/DYNA, and then the experiments are made to verify the simulation. The experimental results are demonstrated to be in line with the numerical simulation results. The liner can form a focused jet of metal fragments with certain amount and mass that travels at very high speed in the cone-angle direction, which indicates that the dislocation model can be used to analyze the crack fracture of notch tip.展开更多
The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-...The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-shaped main injections were used in split injection strategies.The results show that ignition delay from a rectangular injection rate is the shortest.Maximum pressure of the trapezoid injection rate is the largest.And the NOx emission of the rectangular injection rate is the largest.Meanwhile,the soot emission of the trapezoid injection rate is the least among the five injection rates.展开更多
Terrain matching accuracy and real-time performance are affected by local underwater terrain features and structure of matching surface. To solve the extraction problem of local terrain features for underwater terrain...Terrain matching accuracy and real-time performance are affected by local underwater terrain features and structure of matching surface. To solve the extraction problem of local terrain features for underwater terrain-aided navigation (UTAN), real-time data model and selection method of beams are proposed. Then, an improved structure of terrain storage is constructed, and a fast interpolation strategy based on index is proposed, which can greatly improve the terrain interpolation–reconstruction speed. Finally, for the influences of tide, an elimination method of reference depth deviation is proposed, which can reduce the reference depth errors caused by tidal changes. As the simulation test shows, the proposed method can meet the requirements of real-time performance and effectiveness. Furthermore, the extraction time is considerably reduced, which makes the method suitable for the extraction of local terrain features for UTAN.展开更多
This paper explores the potential of controlling quantum systems by introducing ancillary systems and then performing unitary operation on the resulting composite systems. It generalizes the concept of pure state cont...This paper explores the potential of controlling quantum systems by introducing ancillary systems and then performing unitary operation on the resulting composite systems. It generalizes the concept of pure state controllability for quantum systems and establishes the link between the operator controllability of the composite system and the generalized pure state controllability of its subsystem. It is constructively demonstrated that if a composite quantum system can be transferred between any pair of orthonormal pure vectors, then its subsystem is generalized pure-state controllable. Furthermore, the unitary operation and the coherent control can be concretely given to transfer the system from an initial state to the target state. Therefore, these properties may be potentially applied in quantum information, such as manipulating multiple quantum bits and creating entangled pure states. A concrete example has been given to illustrate that a maximally entangled pure state of a quantum system can be generated by introducing an ancillary system and performing open-loop coherent control on the resulting composite system.展开更多
Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential appli- cations such as sound transparency and insulation. The frequency response of acoustic cloaks with a qu...Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential appli- cations such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transforma- tion function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.展开更多
We develop a simple and practical scheme to apply sideband cooling to a cloud of rubidium atoms. A sample containing 4 × 10^(70) ^(87)Rb is trapped in a far red detuned optical lattice. Through optimizing the...We develop a simple and practical scheme to apply sideband cooling to a cloud of rubidium atoms. A sample containing 4 × 10^(70) ^(87)Rb is trapped in a far red detuned optical lattice. Through optimizing the relevant parameters, i.e., laser detuning, magnetic field, polarization, and duration time, a temperature around 1.5 μK and phase space density close to 1/500 are achieved. Compared with polarization gradient cooling, the temperature decreases by around one order of magnitude. This technique could be used in high precision measurement such as atomic clocks and atom interferometer. It could also serve as a precooling means before evaporation cooling in a dipole trap, and may be a promising method of achieving quantum degeneracy with purely optical means.展开更多
An inertial frame based alignment (IFBA) method is presented, especially for the applications on a rocking platform, e.g., marine applications. Defining the initial body frame as the inertial frame, the IFBA method ac...An inertial frame based alignment (IFBA) method is presented, especially for the applications on a rocking platform, e.g., marine applications. Defining the initial body frame as the inertial frame, the IFBA method achieves the alignment by virtue of a cascade of low-pass FIR filters, which attenuate the disturbing acceleration and maintain the gravity vector. The aligning time rests with the orders of the FIR filter group, and the method is suitable for large initial misalignment case. An alignment scheme comprising a coarse phase by the IFBA method and a fine phase by a Kalman filter is presented. Both vehicle-based and ship-based alignment experiments were carried out. The results show that the proposed scheme converges much faster than the traditional method at no cost of precision and also works well under any large initial misalignment.展开更多
In this study,we design periodic grille structures on a single homogenous thin plate to achieve anisotropic acoustic metamaterials that can control flexural waves.The metamaterials can achieve the bending control of f...In this study,we design periodic grille structures on a single homogenous thin plate to achieve anisotropic acoustic metamaterials that can control flexural waves.The metamaterials can achieve the bending control of flexural waves in a thin plate at will by designing only one dimension in the thickness direction,which makes it easier to use this metamaterial to design transformation acoustic devices.The numerical simulation results show that the metamaterials can accurately control the bending waves over a wide frequency range.The experimental results verify the validity of the theoretical analysis.This research provides a more practical theoretical method of controlling flexural waves in thin-plate structures.展开更多
We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wav...We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wave and which-way information are stored in the atomic internal states. For the φ- π- π /2 type of atom interferometer, we find that the visibility(V) and predictability(P) still satisfy the duality relation, P2+ V2≤ 1.展开更多
The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity m...The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity magnetic field,especially in the compression case. To promote the development of magnetomechancial theory, the energy conservation equation, effective magnetic field equation, and anhysteretic magnetization equation of the original Jiles-Atherton(J-A)theory are elucidated and modified, an equation of the local equilibrium status is employed and the differential expression of the modified magnetomechancial model based on the modified J-A theory is established finally. The effect of stress and plastic deformation on the magnetic parameters is analyzed. An excellent agreement is achieved between the theoretic predictions by the present modified model and the previous experimental results. Comparing with the calculation results given by the existing models and experimental results, it is seen indeed that the modified magnetomechanical model can describe the different magnetization features during tension-release and compression-release processes much better, and is the only one which can accurately reflect the experimental observation that the magnetic induction intensity reverses to negative value with the increase of the compressive stress and applied field.展开更多
In order to solve instability problem of calculation precision resulting from the selection of each target weight in evaluating weapon systems, a weighted sum based method is proposed. Specif- ically, the subjective w...In order to solve instability problem of calculation precision resulting from the selection of each target weight in evaluating weapon systems, a weighted sum based method is proposed. Specif- ically, the subjective weights depending on experts' experience are substituted by the optimal weights. The optimal weights are acquired through constructing a mathematical programming model based on subjective weights and objective weights. The method of solving subjective weights is the same as before, and the objective weights were solved by means of grey theory. The case analysis shows that the method of improved weighted sum can improve the evaluation precision up to more than 5% , and minimize the instability of calculation precision resulting from only using subjective weights. The method that the optimal weights substituted the subjective weights is brought forward in improving evaluation precision for the first time. The ideas of the optimal weights and the pro- posed method are described and analyzed.展开更多
Although the channel-decoupling assumption is often used in design of three-dimensional guidance laws, it loses its rationality for aircrafts with strong kinematics coupling because body rotation arises. To overcome t...Although the channel-decoupling assumption is often used in design of three-dimensional guidance laws, it loses its rationality for aircrafts with strong kinematics coupling because body rotation arises. To overcome this trouble, a novel guiding method was proposed based on Lie-group. After a model of 3D guidance is formulated using vectors, the precision guidance with ending angular constraints can be transformed into a problem involving the relation between directional angles and rotational angular velocities of certain vectors. When the guidance model is imposed a SO(3)-based description, a novel 3D sliding mode guidance law with ending angular constraints can be developed via Lie-group control method and variable structure control theory. Finally, the feasibility and performance of the guidance law were shown by simulating the examples.展开更多
文摘A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bouce Wen model, but also determines its corresponding parameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51305448 and 51275519)
文摘This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agree- ments between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.
基金Supported by the National Defense Basic Scientific Research Project(A1020131011)
文摘A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study.
文摘The notch tip fracture criterion of cored liner is proposed based on a dislocation model. The analysis reveals that the ductile shear fracture is a dominant fracture mode in the scored liner, and the fracture path is along the maximum shear stress tracing line. The numerical simulation of fracture process of scored liner under explosive loading is performed using the nonlinear finite element analysis program ANSYS-LS/DYNA, and then the experiments are made to verify the simulation. The experimental results are demonstrated to be in line with the numerical simulation results. The liner can form a focused jet of metal fragments with certain amount and mass that travels at very high speed in the cone-angle direction, which indicates that the dislocation model can be used to analyze the crack fracture of notch tip.
基金Supported by the National Natural Science Foundation of China(51605447)
文摘The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-shaped main injections were used in split injection strategies.The results show that ignition delay from a rectangular injection rate is the shortest.Maximum pressure of the trapezoid injection rate is the largest.And the NOx emission of the rectangular injection rate is the largest.Meanwhile,the soot emission of the trapezoid injection rate is the least among the five injection rates.
基金supported by the National Natural Science Foundation of China(Grant No.51775518)Natural Science Foundation of North University of China(Grant No.2017001)the 333 Academic Start Funding for Talents of North University of China(Grant No.13011915)
文摘Terrain matching accuracy and real-time performance are affected by local underwater terrain features and structure of matching surface. To solve the extraction problem of local terrain features for underwater terrain-aided navigation (UTAN), real-time data model and selection method of beams are proposed. Then, an improved structure of terrain storage is constructed, and a fast interpolation strategy based on index is proposed, which can greatly improve the terrain interpolation–reconstruction speed. Finally, for the influences of tide, an elimination method of reference depth deviation is proposed, which can reduce the reference depth errors caused by tidal changes. As the simulation test shows, the proposed method can meet the requirements of real-time performance and effectiveness. Furthermore, the extraction time is considerably reduced, which makes the method suitable for the extraction of local terrain features for UTAN.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674040) and the National Natural Science Fund for Distinguished Young Scholars (Grant No 60225015).
文摘This paper explores the potential of controlling quantum systems by introducing ancillary systems and then performing unitary operation on the resulting composite systems. It generalizes the concept of pure state controllability for quantum systems and establishes the link between the operator controllability of the composite system and the generalized pure state controllability of its subsystem. It is constructively demonstrated that if a composite quantum system can be transferred between any pair of orthonormal pure vectors, then its subsystem is generalized pure-state controllable. Furthermore, the unitary operation and the coherent control can be concretely given to transfer the system from an initial state to the target state. Therefore, these properties may be potentially applied in quantum information, such as manipulating multiple quantum bits and creating entangled pure states. A concrete example has been given to illustrate that a maximally entangled pure state of a quantum system can be generated by introducing an ancillary system and performing open-loop coherent control on the resulting composite system.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11004250 and 51275519.
文摘Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential appli- cations such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transforma- tion function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.
基金supported by the National Natural Science Foundation of China(Grant No.51275523)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134307110009)+1 种基金the Graduate Innovative Research Fund of Hunan Province,China(Grant No.CX20158015)the Excellent Graduate Innovative Fund of National University of Defense Technology(NUDT)(Grant No.B150305)
文摘We develop a simple and practical scheme to apply sideband cooling to a cloud of rubidium atoms. A sample containing 4 × 10^(70) ^(87)Rb is trapped in a far red detuned optical lattice. Through optimizing the relevant parameters, i.e., laser detuning, magnetic field, polarization, and duration time, a temperature around 1.5 μK and phase space density close to 1/500 are achieved. Compared with polarization gradient cooling, the temperature decreases by around one order of magnitude. This technique could be used in high precision measurement such as atomic clocks and atom interferometer. It could also serve as a precooling means before evaporation cooling in a dipole trap, and may be a promising method of achieving quantum degeneracy with purely optical means.
基金the National Natural Science Foundation of China (60604011)
文摘An inertial frame based alignment (IFBA) method is presented, especially for the applications on a rocking platform, e.g., marine applications. Defining the initial body frame as the inertial frame, the IFBA method achieves the alignment by virtue of a cascade of low-pass FIR filters, which attenuate the disturbing acceleration and maintain the gravity vector. The aligning time rests with the orders of the FIR filter group, and the method is suitable for large initial misalignment case. An alignment scheme comprising a coarse phase by the IFBA method and a fine phase by a Kalman filter is presented. Both vehicle-based and ship-based alignment experiments were carried out. The results show that the proposed scheme converges much faster than the traditional method at no cost of precision and also works well under any large initial misalignment.
文摘In this study,we design periodic grille structures on a single homogenous thin plate to achieve anisotropic acoustic metamaterials that can control flexural waves.The metamaterials can achieve the bending control of flexural waves in a thin plate at will by designing only one dimension in the thickness direction,which makes it easier to use this metamaterial to design transformation acoustic devices.The numerical simulation results show that the metamaterials can accurately control the bending waves over a wide frequency range.The experimental results verify the validity of the theoretical analysis.This research provides a more practical theoretical method of controlling flexural waves in thin-plate structures.
基金supported by the National Natural Science Foundation of China(Grant No.51275523)the Special Research Fund for the Doctoral Program of Higher Education,China(Grant No.20134307110009)
文摘We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wave and which-way information are stored in the atomic internal states. For the φ- π- π /2 type of atom interferometer, we find that the visibility(V) and predictability(P) still satisfy the duality relation, P2+ V2≤ 1.
基金Project supported by the Major Program of Sichuan Province Science and Technology Plan,China(Grant No.2015SZ0010)the Scientific Research Foundation of Sichuan Province,China(Grant No.2014GZ0121)
文摘The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity magnetic field,especially in the compression case. To promote the development of magnetomechancial theory, the energy conservation equation, effective magnetic field equation, and anhysteretic magnetization equation of the original Jiles-Atherton(J-A)theory are elucidated and modified, an equation of the local equilibrium status is employed and the differential expression of the modified magnetomechancial model based on the modified J-A theory is established finally. The effect of stress and plastic deformation on the magnetic parameters is analyzed. An excellent agreement is achieved between the theoretic predictions by the present modified model and the previous experimental results. Comparing with the calculation results given by the existing models and experimental results, it is seen indeed that the modified magnetomechanical model can describe the different magnetization features during tension-release and compression-release processes much better, and is the only one which can accurately reflect the experimental observation that the magnetic induction intensity reverses to negative value with the increase of the compressive stress and applied field.
基金Supported by the Natonal Natural Science Foundation of China(5145781)
文摘In order to solve instability problem of calculation precision resulting from the selection of each target weight in evaluating weapon systems, a weighted sum based method is proposed. Specif- ically, the subjective weights depending on experts' experience are substituted by the optimal weights. The optimal weights are acquired through constructing a mathematical programming model based on subjective weights and objective weights. The method of solving subjective weights is the same as before, and the objective weights were solved by means of grey theory. The case analysis shows that the method of improved weighted sum can improve the evaluation precision up to more than 5% , and minimize the instability of calculation precision resulting from only using subjective weights. The method that the optimal weights substituted the subjective weights is brought forward in improving evaluation precision for the first time. The ideas of the optimal weights and the pro- posed method are described and analyzed.
基金Sponsored by the National Natural Science Foundation of China (60374006)
文摘Although the channel-decoupling assumption is often used in design of three-dimensional guidance laws, it loses its rationality for aircrafts with strong kinematics coupling because body rotation arises. To overcome this trouble, a novel guiding method was proposed based on Lie-group. After a model of 3D guidance is formulated using vectors, the precision guidance with ending angular constraints can be transformed into a problem involving the relation between directional angles and rotational angular velocities of certain vectors. When the guidance model is imposed a SO(3)-based description, a novel 3D sliding mode guidance law with ending angular constraints can be developed via Lie-group control method and variable structure control theory. Finally, the feasibility and performance of the guidance law were shown by simulating the examples.