The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elem...The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.展开更多
In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the...In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the influence of load-indcued errors on machining accuracy, an identification model of load-induced errors based on the deformation caused by applied load of hydrostatic turntable of computerized numerical control(CNC) gantry milling heavy machine is proposed. Based on multi-body system theory and screw theory, the space machining accuracy model of heavy duty machine tool is established with consideration of identified load-induced errors. And then, the influence of load-induced errors on space machining accuracy and the roundness error of a milled hole is analyzed. The analysis results show that load-induced errors have a big influence on the roundness error of machined hole, especially when the center of the milled hole is far from that of hydrostatic turntable.展开更多
Aiming at determining the thermal contact resistance of ball screws,a new analytical method combining the minimum excess principle with the MB fractal theory is proposed to estimate thermal contact resistance of ball ...Aiming at determining the thermal contact resistance of ball screws,a new analytical method combining the minimum excess principle with the MB fractal theory is proposed to estimate thermal contact resistance of ball screws considering microscopic fractal characteristics of contact surfaces.The minimum excess principle is employed for normal stress analysis.Moreover,the MB fractal theory is adopted for thermal contact resistance.The effectiveness of the proposed method is validated by self-designed experiment.The comparison between theoretical and experimental results demonstrates that thermal contact resistance of ball screws can be obtained by the proposed method.On this basis,effects of fractal parameters on thermal contact resistance of ball screws are discussed.Moreover,effects of the axial load on thermal contact resistance of ball screws are also analyzed.The conclusion can be drawn that the thermal contact resistance decreases along with the fractal dimension D increase and it increases along with the scale parameter G increase,and thermal contact resistance of ball screws is retained almost constant along with axial load increase before the preload of the right nut turns into zero in value.The application of the proposed method is also conducted and validated by the temperature measurement on a self-designed test bed.展开更多
Based on the analytical solutions of T-H equations and its state transition matrix form,the open-loop control method of spacecraft impulsive relative hovering was studied,which is promising for practical engineering u...Based on the analytical solutions of T-H equations and its state transition matrix form,the open-loop control method of spacecraft impulsive relative hovering was studied,which is promising for practical engineering use.The true anomaly intervals of the hovering impulse were optimized by the nonlinear mathematical programming.Based on the calculation of collision probability,the method of safety analysis and risk management was proposed.The numerical simulations show that the introduced relative hovering method can be used for circular and elliptical reference orbits hovering.Furthermore,the local optimal solution can be obtained by applying the true anomaly intervals optimization method.The maximum collision probability and the minimum relative distance nearly appear at the same time.And,the smaller the relative distance is,the larger the collision probability.展开更多
基金Projects(50875002, 60705036) supported by the National Natural Science Foundation of ChinaProject(3062004) supported by Beijing Natural Science Foundation, China+1 种基金Project(20070104) supported by the Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of SciencesProject(2009AA04Z415) supported by the National High-Tech Research and Development Program of China
文摘The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.
基金Projects(51575010,51575009)supported by the National Natural Science Foundations of ChinaProject(Z1511000003150138)supported by Beijing Nova Program,China
文摘In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the influence of load-indcued errors on machining accuracy, an identification model of load-induced errors based on the deformation caused by applied load of hydrostatic turntable of computerized numerical control(CNC) gantry milling heavy machine is proposed. Based on multi-body system theory and screw theory, the space machining accuracy model of heavy duty machine tool is established with consideration of identified load-induced errors. And then, the influence of load-induced errors on space machining accuracy and the roundness error of a milled hole is analyzed. The analysis results show that load-induced errors have a big influence on the roundness error of machined hole, especially when the center of the milled hole is far from that of hydrostatic turntable.
基金Projects(51875008,51505012,51575014)supported by the National Natural Science Foundation of ChinaProject supported by the China Scholarship Council
文摘Aiming at determining the thermal contact resistance of ball screws,a new analytical method combining the minimum excess principle with the MB fractal theory is proposed to estimate thermal contact resistance of ball screws considering microscopic fractal characteristics of contact surfaces.The minimum excess principle is employed for normal stress analysis.Moreover,the MB fractal theory is adopted for thermal contact resistance.The effectiveness of the proposed method is validated by self-designed experiment.The comparison between theoretical and experimental results demonstrates that thermal contact resistance of ball screws can be obtained by the proposed method.On this basis,effects of fractal parameters on thermal contact resistance of ball screws are discussed.Moreover,effects of the axial load on thermal contact resistance of ball screws are also analyzed.The conclusion can be drawn that the thermal contact resistance decreases along with the fractal dimension D increase and it increases along with the scale parameter G increase,and thermal contact resistance of ball screws is retained almost constant along with axial load increase before the preload of the right nut turns into zero in value.The application of the proposed method is also conducted and validated by the temperature measurement on a self-designed test bed.
文摘Based on the analytical solutions of T-H equations and its state transition matrix form,the open-loop control method of spacecraft impulsive relative hovering was studied,which is promising for practical engineering use.The true anomaly intervals of the hovering impulse were optimized by the nonlinear mathematical programming.Based on the calculation of collision probability,the method of safety analysis and risk management was proposed.The numerical simulations show that the introduced relative hovering method can be used for circular and elliptical reference orbits hovering.Furthermore,the local optimal solution can be obtained by applying the true anomaly intervals optimization method.The maximum collision probability and the minimum relative distance nearly appear at the same time.And,the smaller the relative distance is,the larger the collision probability.