Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degrad...Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.展开更多
Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability ...Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.展开更多
Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and ...Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.展开更多
An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degra...An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.展开更多
A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not...A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not have any impact on the product's performance.However,in some cases,the measurement process may exert extra stress on products being measured.To obtain trustful results in such a situation,a new degradation model was derived.Then,by fusing the prior information of product and its own on-line degradation data,the real-time reliability was evaluated on the basis of Bayesian formula.To make the proposed method more practical,a procedure based on expectation maximization (EM) algorithm was presented to estimate the unknown parameters.Finally,the performance of the proposed method was illustrated by a simulation study.The results show that ignoring the influence of the damaged measurement process can lead to biased evaluation results,if the damaged measurement process is involved.展开更多
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no...A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.展开更多
A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censore...A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.展开更多
The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and lea...The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and least-squares estimation (LSE) while it was hard to build confidence intervals (CI). The concept of generalized confidence interval (GCI) was introduced to build CIs of parameters under multiply type-I censoring. Further, GCI based on LSE and GCI based on MLE were proposed. It is mathematically proved that the former is exact and the latter is approximate. Besides, a Monte Carlo simulation study and an illustrative example also Ran out that the GCI method based on LSE yields rather satisfactory results by comparison with the ones based on MLE. It should be clear that the GCI method is a sensible choice to evaluate reliability under multiply type-I censoring.展开更多
The dynamic capacitated location allocation problem in the military supportive network(DCLAP-MSN) is a representative of combinative optimization problems,and its optimization process is complicated.For this reason,...The dynamic capacitated location allocation problem in the military supportive network(DCLAP-MSN) is a representative of combinative optimization problems,and its optimization process is complicated.For this reason,a dynamic capacitated location allocation model is provided firstly.Then,a hybrid heuristic algorithm which combines genetic algorithm,repair algorithm of solutions and greedy search,is proposed as the solving method.The optimization performance is improved by effectively integrating the repair algorithm of solutions and greedy search with genetic optimization.The experiment results indicate that the proposed algorithm is a feasible and effective method for the problem.展开更多
The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary me...The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary means of transport in a mountain region struck by a devastating earthquake) at pointed temporary facilities, including helicopter-based delivery plans for commodities and evacuation plans for critical population, in which relief demands are considered as uncertain. The proposed mobilization model is a two-stage stochastic mixed integer program with two objectives: maximizing the expected fill rate and minimizing the total expenditure of the mobilization campaign. Scenario decomposition based heuristic algorithms are also developed according to the structure of the proposed model. The computational results of a numerical example, which is constructed from the scenarios of the Great Wenchuan Earthquake, indicate that the model can provide valuable decision support for the mobilization of post-earthquake relief, and the proposed algorithms also have high efficiency in computation.展开更多
基金supported by the Natural Science Foundation of Hunan Province(2018JJ2282)
文摘Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.
基金Project(71371182) supported by the National Natural Science Foundation of China
文摘Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.
基金supported by the National Natural Science Foundation of China (70971132)
文摘Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.
基金Project(60904002)supported by the National Natural Science Foundation of China
文摘An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.
基金Project(60904002)supported by the National Natural Science Foundation of China
文摘A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not have any impact on the product's performance.However,in some cases,the measurement process may exert extra stress on products being measured.To obtain trustful results in such a situation,a new degradation model was derived.Then,by fusing the prior information of product and its own on-line degradation data,the real-time reliability was evaluated on the basis of Bayesian formula.To make the proposed method more practical,a procedure based on expectation maximization (EM) algorithm was presented to estimate the unknown parameters.Finally,the performance of the proposed method was illustrated by a simulation study.The results show that ignoring the influence of the damaged measurement process can lead to biased evaluation results,if the damaged measurement process is involved.
基金supported by the National Natural Science Foundation of China (7060103570801062)
文摘A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.
基金supported by the National Natural Science Foundation of China (70571083)the Research Fund for the Doctoral Program of Higher Education of China (20094307110013)
文摘A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.
基金Project(71371182) supported by the National Natural Science Foundation of China
文摘The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and least-squares estimation (LSE) while it was hard to build confidence intervals (CI). The concept of generalized confidence interval (GCI) was introduced to build CIs of parameters under multiply type-I censoring. Further, GCI based on LSE and GCI based on MLE were proposed. It is mathematically proved that the former is exact and the latter is approximate. Besides, a Monte Carlo simulation study and an illustrative example also Ran out that the GCI method based on LSE yields rather satisfactory results by comparison with the ones based on MLE. It should be clear that the GCI method is a sensible choice to evaluate reliability under multiply type-I censoring.
基金supported by the National Natural Science Foundation of China (70971132)the Elite Plan Program of National University of Defense Technology
文摘The dynamic capacitated location allocation problem in the military supportive network(DCLAP-MSN) is a representative of combinative optimization problems,and its optimization process is complicated.For this reason,a dynamic capacitated location allocation model is provided firstly.Then,a hybrid heuristic algorithm which combines genetic algorithm,repair algorithm of solutions and greedy search,is proposed as the solving method.The optimization performance is improved by effectively integrating the repair algorithm of solutions and greedy search with genetic optimization.The experiment results indicate that the proposed algorithm is a feasible and effective method for the problem.
基金supported by the National Natural Science Foundation of China 71371181 91024006China Postdoctoral Science Foundation (2012M521918)
文摘The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary means of transport in a mountain region struck by a devastating earthquake) at pointed temporary facilities, including helicopter-based delivery plans for commodities and evacuation plans for critical population, in which relief demands are considered as uncertain. The proposed mobilization model is a two-stage stochastic mixed integer program with two objectives: maximizing the expected fill rate and minimizing the total expenditure of the mobilization campaign. Scenario decomposition based heuristic algorithms are also developed according to the structure of the proposed model. The computational results of a numerical example, which is constructed from the scenarios of the Great Wenchuan Earthquake, indicate that the model can provide valuable decision support for the mobilization of post-earthquake relief, and the proposed algorithms also have high efficiency in computation.