期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Climatic implications in earlywood and latewood width indices of Chinese pine in north central China
1
作者 Kaixuan Yang Junzhou Zhang +1 位作者 Haowen Fan Yuan Yan 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期143-153,共11页
Latewood width(LWW)indices of trees are considered a reliable proxy of summer precipitation in the Northern Hemisphere.However,the strong coupling and high correlation between earlywood width(EWW)and LWW indices often... Latewood width(LWW)indices of trees are considered a reliable proxy of summer precipitation in the Northern Hemisphere.However,the strong coupling and high correlation between earlywood width(EWW)and LWW indices often prevent registration of climate signals of the LWW index.In this study,328-year-long earlywood width and latewood width chronologies were developed from Chinese pine at two sites in the Hasi Mountains,north central China.The climate responses of these chronologies were analyzed and the LWW index used to derive sum-mer precipitation signals.Correlation analyses showed that LWW was particularly influenced by earlywood growth and recorded stronger climate signals of the previous year as EWW,rather than those of the current year with infrequent summer climate signals.However,after removing the effect of earlywood growth using a simple regression model,the adjusted LWW chronology(LWW_(adj))showed a strong relationship with July precipitation in dry years.This suggests that the LWW_(adj) chronology has the potential to be used to investigate long-term variability in summer precipitation in drought-limited regions. 展开更多
关键词 DENDROCLIMATOLOGY Latewood width Climate response Summer precipitation Earlywood effect
在线阅读 下载PDF
Strong controls of daily minimum temperature on the autumn photosynthetic phenology of subtropical vegetation in China 被引量:5
2
作者 Peixin Ren Zelin Liu +5 位作者 Xiaolu Zhou Changhui Peng Jingfeng Xiao Songhan Wang Xing Li Peng Li 《Forest Ecosystems》 SCIE CSCD 2021年第3期413-424,共12页
Background:Vegetation phenology research has largely focused on temperate deciduous forests,thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions... Background:Vegetation phenology research has largely focused on temperate deciduous forests,thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions.Results:Using satellite solar-induced chlorophyll fluorescence(SIF)and MODIS enhanced vegetation index(EVI)data,we applied two methods to evaluate temporal and spatial patterns of the end of the growing season(EGS)in subtropical vegetation in China,and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation.Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods(dynamic threshold method and derivative method)was later than that derived from gross primary productivity(GPP)based on the eddy covariance technique,and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks,respectively.We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation(accounting for more than 73%and 62%of the study areas,respectively),but negatively correlated with preseason maximum temperature(accounting for more than 59%of the study areas).In addition,EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors,and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests,shrub and grassland.Conclusions:Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China.We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region.These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China,and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget. 展开更多
关键词 Carbon cycle Evergreen vegetation Plant phenology Solar-induced Fluorescence Climate change MODIS Eddy covariance
在线阅读 下载PDF
Winter-spring minimum temperature variations inferred from tree-ring δ^(13)C in southeastern China
3
作者 Wenli Li Feifei Zhou +1 位作者 Heng Zhang Keyan Fang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期182-190,共9页
Long-term temperature variations inferred from high-resolution proxies provide an important context to evaluate the intensity of current warming.However,tem-perature reconstructions in humid southeastern China are sca... Long-term temperature variations inferred from high-resolution proxies provide an important context to evaluate the intensity of current warming.However,tem-perature reconstructions in humid southeastern China are scarce and particularly lack long-term data,limiting us to obtain a complete picture of regional temperature evolution.In this study,we present a well-verified reconstruction of winter-spring(January–April)minimum temperatures over southeastern China based on stable carbon isotopic(δ^(13)C)records of tree rings from Taxus wallichiana var.mairei from 1860 to 2014.This reconstruction accounted for 56.4%of the total observed variance.Cold periods occurred during the 1860s–1910s and 1960s–1970s.Although temperatures have had an upward trend since the 1920s,most of the cold extremes were in recent decades.The El Niño-Southern Oscillation(ENSO)variance acted as a key modulator of regional winter-spring minimum temperature variability.However,teleconnections between them were a nonlinear process,i.e.,a reduced or enhanced ENSO variance may result in a weakened or intensified temperature-ENSO relationship. 展开更多
关键词 Tree rings Carbon isotope Southeastern China Extreme coldness El nino-southern oscillation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部