期刊文献+
共找到528篇文章
< 1 2 27 >
每页显示 20 50 100
Deciphering Water Oxidation Catalysts:The Dominant Role of Surface Chemistry over Reconstruction Degree in Activity Promotion
1
作者 Li An Jianyi Li +7 位作者 Yuanmiao Sun Jiamin Zhu Justin Zhu Yeow Seow Hong Zhang Nan Zhang Pinxian Xi Zhichuan J.Xu Chun‑Hua Yan 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期340-354,共15页
Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has ... Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation. 展开更多
关键词 Oxygen evolution reaction Perovskite oxides DOPING Activation and reconstruction
在线阅读 下载PDF
Synergy of compress strain and antioxidant of platinum-copper for enhanced the oxygen reduction performance
2
作者 Jun Zhang Pingjuan Liang +9 位作者 Xinlan Xu Rong Wang Shuyue Liu Chunyuan Wang Boyu Liu Laizheng Luo Meng Jin Huan Liu Huan Yi Shi-Yu Lu 《Nano Materials Science》 2025年第1期105-112,共8页
The development of efficient and durable electrocatalysts for oxygen reduction reaction(ORR)holds a pivotal significance in the successful commercialization of proton exchange membrane fuel cells(PEMFCs)but is still c... The development of efficient and durable electrocatalysts for oxygen reduction reaction(ORR)holds a pivotal significance in the successful commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challenging.Herein,we report a worm-liked PtCu nanocrystals dispersed on nitrogen-doped carbon hollow microspheres(Pt_(0.38)Cu_(0.62)/N-HCS).Benefiting from its structural and compositional advantages,the resulting Pt_(0.38)Cu_(0.62)/N-HCS catalyst delivers exceptional electrocatalytic activity for ORR,with a half-wave potential(E_(1/2))of 0.837 V,a mass activity of 0.672 A mgPt^(-1),and a Tafel slope of 50.66 mV dec^(-1),surpassing that of commercial Pt/C.Moreover,the Pt_(0.38)Cu_(0.62)/N-HCS follows the desired four-electron transfer mechanism throughout the ORR process,thereby displaying a high selectivity for direct reduction of O_(2)to H_(2)O.Remarkably,this catalyst also showcases high stability,with only a 25 mV drop in E_(1/2)after 10,000 cycles in an acidic electrolyte.Theoretical calculations elucidate the incorporation of Cu into Pt lattice induces compressive strain,which effectively tailors the d band center of Pt active sites and strengthens the surface chemisorption of O_(2)molecules on PtCu alloys.Consequently,the Pt_(0.38)Cu_(0.62)/N-HCS catalyst exhibits an improved ability to adsorb O_(2)molecules on its surface,accelerating the reaction kinetics of O_(2)conversion to*OOH.Additionally,Cu atoms,not only serving as sacrificial anode,undergo preferential oxidation during PEMFCs operation when compared to Pt,but also the stable Cu species in PtCu alloys contributes significantly to maintaining the strain effect,collectively enhancing both activity and durability.Overall,this research offers an effective and promising approach to enhance the activity and stability of Pt-based ORR electrocatalysts in PEMFCs. 展开更多
关键词 PtCu alloy Compressive strain Oxygen reduction reaction Activity and durability Cu oxidation
在线阅读 下载PDF
Triazine-COF@Silicon nanowire mimicking plant leaf to enhance photoelectrocatalytic CO_(2)reduction to C_(2+) chemicals
3
作者 Wenrui Wan Fanhua Meng +8 位作者 Si Chen Jianhua Wang Chunyan Liu Yan Wei Chenpu He Li Fan Qiaolan Zhang Weichun Ye Huanwang Jing 《Green Energy & Environment》 2025年第2期422-432,共11页
Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed ... Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed and synthesized a novel copper-coordinated covalent triazine framework(CuCTF)supported by silicon nanowire arrays on wafer chip.This marks the first-ever application of such a hybrid material in the photoelectrocatalytic reduction of CO_(2)under mild conditions.The Si@CuCTF6 heterojunction has exhibited exceptional selectivity of 95.6%towards multicarbon products(C_(2+))and apparent quantum efficiency(AQE)of 0.89%for carbon-based products.The active sites of the catalysts are derived from the nitrogen atoms of unique triazine ring structure in the ordered porous framework and the abundant Cu-N coordination sites with bipyridine units.Furthermore,through DFT calculations and operando FTIR spectra analysis,we proposed a comprehensive mechanism for the photoelectrocatalytic CO_(2)reduction,confirming the existence of key intermediate species such as*CO_(2)-,*=C=O,*CHO and*CO-CHO etc.This work not only provides a new way to mimic photosynthesis of plant leaves but also gives a new opportunity to enter this research field in the future. 展开更多
关键词 Silicon PHOTOELECTROCATALYSIS CO_(2)reduction Covalent triazine framework Sustainable chemistry
在线阅读 下载PDF
Universal design of three-dimensional porous graphene-iron based promotors for kinetically rationalized lithium-sulfur chemistry
4
作者 Hua Gao Yunfeng Zhang +6 位作者 Menglei Wang Ruoxuan Yang Shuai Feng Xuan Cao Yaping Zhang Zhongyuan Lu Yingze Song 《Journal of Energy Chemistry》 2025年第1期192-200,共9页
Lithium-sulfur(Li-S)batteries are widely deemed to be one of the most potential candidates for future secondary batteries because of their remarkable energy density.Nevertheless,notorious polysulfide shuttling and ret... Lithium-sulfur(Li-S)batteries are widely deemed to be one of the most potential candidates for future secondary batteries because of their remarkable energy density.Nevertheless,notorious polysulfide shuttling and retarded sulfur reaction kinetics pose significant obstacles to the further application of Li-S batteries.While rationally designed highly active electrocatalysts can facilitate polysulfide conversion,the universal and scalable synthesis strategies need to be developed.Herein,a universal synthetic strategy to construct a series of three-dimensional(3D)porous graphene-iron(3DGr-Fe)based electrocatalysts involving 3DGr-FeP,3DGr-Fe_(3)C,and 3DGr-Fe_(3)Se_(4)is exploited for manipulating the Li-S redox reactions.It has been observed that the implementation of a 3D porous Gr architecture leads to the well-designed conductive networks,while the uniformly dispersed iron nanoparticles introduce an abundance of active sites,fostering the lithium polysulfide conversion,thereby bolstering the overall electrochemical performance.The Li-S battery with the 3DGr-Fe based electrocatalyst exhibits remarkable capacity retention of 94.8%upon 100 times at 0.2 C.Moreover,the soft-packaged Li-S pouch cell based on such a 3DGr-Fe electrocatalyst delivers superior capacity of 1060.71 mA h g^(-1)and guarantees for the continuous 30 min work of fan toy.This investigation gives comprehensive insights into the design,synthesis,and mechanism of 3DGr-Fe based electrocatalysts with high activity toward efficient and durable Li-S batteries. 展开更多
关键词 Lithium-sulfur battery Universal synthesis 3D graphene-iron based promotor ELECTROCATALYSIS
在线阅读 下载PDF
Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation 被引量:1
5
作者 Guangfu Qian Wei Chen +5 位作者 Jinli Chen Li Yong Gan Tianqi Yu Miaojing Pan Xiaoyan Zhuo Shibin Yin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期684-694,共11页
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr... Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation. 展开更多
关键词 Carbon-encapsulated Tensile strain Catalyst Oxygen evolution reaction Urea oxidation reaction
在线阅读 下载PDF
Linear paired electrolysis of furfural to furoic acid at both anode and cathode in a multiple redox mediated system 被引量:1
6
作者 Xinxin Li Linchuan Cong +4 位作者 Haibo Lin Fangbing Liu Xiangxue Fu Hai-Chao Xu Nan Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期104-113,共10页
Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we r... Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we report a multiple redox-mediated linear paired electrolysis system,combining the hydrogen peroxide mediated cathode process with the I2 mediated anode process,and realize the conversion of furfural to furoic acid in both side of the dividedflow cell simultaneously.By reasonably controlling the cathode potential,the undesired water splitting reaction and furfural reduction side reactions are avoided.Under the galvanostatic electrolysis,the two-mediated electrode processes have good compatibility,which reduce the energy consumption by about 22%while improving the electronic efficiency by about 125%.This system provides a green electrochemical synthesis route with commercial prospects. 展开更多
关键词 Multiple redox mediated system Linear paired electrolysis FURFURAL Furoic acid
在线阅读 下载PDF
Realizing methanol synthesis from CO and water via the synergistic effect of Cu^(0)/Cu^(+)over Cu/ZrO_(2) catalyst 被引量:1
7
作者 Yuan Fang Fan Wang +10 位作者 Yang Chen Qian Lv Kun Jiang Hua Yang Huibo Zhao Peng Wang Yuyan Gan Lizhi Wu Yu Tang Xinhua Gao Li Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期126-134,I0004,共10页
The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized ... The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor. 展开更多
关键词 H_(2)O CO METHANOL Cu-based catalysts t-ZrO_(2)
在线阅读 下载PDF
Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering 被引量:12
8
作者 Kangyu Zou Peng Cai +6 位作者 Baowei Wang Cheng Liu Jiayang Li Tianyun Qiu Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期239-257,共19页
The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium... The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium ion capacitors(LICs).Here,an orientateddesigned pore size distribution(range from 0.5 to 200 nm)and graphitization engineering strategy of carbon materials through regulating molar ratios of Zn/Co ions has been proposed,which provides an effective platform to deeply evaluate the capacitive behaviors of carbon cathode.Significantly,after the systematical analysis cooperating with experimental result and density functional theory calculation,it is uncovered that the size of solvated PF6-ion is about 1.5 nm.Moreover,the capacitive behaviors of carbon cathode could be enhanced attributed to the controlled pore size of 1.5-3 nm.Triggered with synergistic effect of graphitization and appropriate pore size distribution,optimized carbon cathode(Zn90Co10-APC)displays excellent capacitive performances with a reversible specific capacity of^50 mAh g-1at a current density of 5 A g-1.Furthermore,the assembly pre-lithiated graphite(PLG)//Zn90Co10-APC LIC could deliver a large energy density of 108 Wh kg-1 and a high power density of 150,000 W kg-1 as well as excellent long-term ability with 10,000 cycles.This elaborate work might shed light on the intensive understanding of the improved capacitive behavior in LiPF<sub>6 electrolyte and provide a feasible principle for elaborate fabrication of carbon cathodes for LIC systems. 展开更多
关键词 Carbon materials Pore size regulation GRAPHITIZATION Capacitive behavior Lithium ion capacitor
在线阅读 下载PDF
An option for green and sustainable future: Electrochemical conversion of ammonia into nitrogen 被引量:6
9
作者 Bo Zhou Nana Zhang +4 位作者 Yujie Wu Weijun Yang Yanbing Lu Yanyong Wang Shuangyin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期384-402,共19页
Green and sustainable options are needed to ease the current energy and environmental crisis, and alleviate the greenhouse effect and energy shortage. As an alternative carbon–neutral synthetic fuel, ammonia shows gr... Green and sustainable options are needed to ease the current energy and environmental crisis, and alleviate the greenhouse effect and energy shortage. As an alternative carbon–neutral synthetic fuel, ammonia shows great potential due to its high energy density, non-toxic by-products, and mature related infrastructures. However, related practical applications have been severely hampered on ammoniaoxidation due to the high cost of catalysts and immature energy utilization systems. Here, we comprehensively summarized the efforts which have been made in recent years with the aim of providing a deep sight into the development and deficiencies in this territory and trying to establish a simple framework of basic knowledge for researchers. The exploration of mechanism is discussed first and then the relevant catalysts studied in recent years are summarized. Besides, the progress of direct ammonia fuel cells(DAFCs) is also presented and the challenges as well as perspectives on future developments of electrocatalysts for ammonia electro-oxidation and its practical application are provided at the end. 展开更多
关键词 AMMONIA Ammonia electro-oxidation reaction(AOR) Mechanism ELECTROCATALYSTS DAFCs
在线阅读 下载PDF
Selective electrocatalytic conversion of methane to fuels and chemicals 被引量:6
10
作者 Shunji Xie Shengqi Lin +2 位作者 Qinghong Zhang Zhongqun Tian Ye Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1629-1636,共8页
The increase in natural gas reserves makes methane a significant hydrocarbon feedstock. However, thedirect catalytic conversion of methane into liquid fuels and useful chemicals remains a great challenge,and many stud... The increase in natural gas reserves makes methane a significant hydrocarbon feedstock. However, thedirect catalytic conversion of methane into liquid fuels and useful chemicals remains a great challenge,and many studies have been devoted to this field in the past decades. Electrocatalysis is considered asan important alternative approach for the direct conversion of methane into value-added chemicals, al-though many other innovative methods have been developed. This review highlights recent advances inelectrocatalytic conversion of methane to ethylene and methanol, two important chemicals. The electro-catalytic systems efficient for methane conversions are summarized with an emphasis on catalysts andelectrolytes. The effects of reaction conditions such as the temperature and the acid-base property of thereaction medium are also discussed, 展开更多
关键词 METHANE ELECTROCATALYSIS Selective conversion Value-added chemicals
在线阅读 下载PDF
Insights into electrochemical nitrogen reduction reaction mechanisms:Combined effect of single transition-metal and boron atom 被引量:5
11
作者 Xingzhu Chen Wee-Jun Ong +2 位作者 Xiujian Zhao Peng Zhang Neng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期577-585,共9页
Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focus... Developing single-atom catalysts(SACs) for electrochemical devices is a frontier in energy conversion.The comparison of stability,activity and selectivity between various single atoms is one of the main research focuses in SACs.However,the in-depth understanding of the role that the coordination atoms of single atom play in the catalytic process is lacking.Herein,we proposed a graphene-like boroncarbon-nitride(BCN) monolayer as the support of single metal atom.The electrocatalytic nitrogen reduction reaction(eNRR) performances of 3 d,4 d transition metal(TM) atoms embedded in defective BCN were systematically investigated by means of density functional theory(DFT) computations.Our study shows that the TM-to-N and B-to-N π-back bonding can contribute to the activation of N_(2).Importantly,a combined effect is revealed between single TM atom and boron atom on eNRR:TM atom enhances the nitrogen reduction process especially in facilitating the N_(2) adsorption and the NH3 desorption,while boron atom modulates the bonding strength of key intermediates by balancing the charged species.Furthermore,Nb@BN3 possesses the highest electrocata lytic activity with limiting potential of-0.49 V,and exhibits a high selectivity for nitrogen reduction reaction(NRR) to ammonia compared with hydrogen evolution reaction(HER).As such,this work can stimulate a research doorway for designing multi-active sites of the anchored single atoms and the innate atoms of substrate based on the mechanistic insights to guide future eNRR research. 展开更多
关键词 Boron-carbon–nitrogen(BCN) Single-atom catalysts Electrocatalytic nitrogen reduction reaction Density functional theory Combined effect
在线阅读 下载PDF
Al-modified yolk-shell silica particle-supported NiMo catalysts for ultradeep hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene:Efficient accessibility of active sites and suitable acidity
12
作者 Ke Yu Wei-Min Kong +3 位作者 Zhen Zhao Ai-Jun Duan Lian Kong Xi-Long Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期654-666,共13页
Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proporti... Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components. 展开更多
关键词 Al-containing yolk-shell silica particles ACCESSIBILITY ACIDITY Metal-support interaction Hydrodesulfurization
在线阅读 下载PDF
Properties of high cis-1,4 content hydroxyl-terminated polybutadiene and its application in composite solid propellants
13
作者 Deqian Meng Lipeng Sang +2 位作者 Pingan Zhang Jianru Deng Xiang Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期199-209,共11页
In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,thi... In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution,functionality,viscosity,molecular polarity,and other physicochemical properties,which provided effective data support for its subsequent application.In addition,the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity,allowing it to be rapidly cured at low temperatures,and the cured elastomers had excellent mechanical properties,with tensile strength and elongation up to 1.89 MPa and 1100%,respectively.It was also found that cis-HTPB has extremely excellent low-temperature resistance,and the glass transition temperature(T_(g))of its cured elastomer is as low as-101℃.Based on the above studies,cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance,and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties. 展开更多
关键词 High cis-1 4 content-HTPB(cis-HTPB) Low-temperature resistance Comparison of physicochemical properties cis-HTPB curing process cis-HTPB based propellant
在线阅读 下载PDF
Effective separation of coal gasification fine slag: Role of classification and ultrasonication in enhancing flotation
14
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Zhen Li Mengyan Cheng Xiaoyi Chen Tianhao Nan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期867-880,共14页
Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and ... Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect. 展开更多
关键词 Coal gasification fine slag Size classification Ultrasonic pretreatment FLOTATION Carbon recovery
在线阅读 下载PDF
Synthesis of multifunctional additives for solid propellants:Structure,properties and mechanism
15
作者 Pingan Zhang Lina Sun +1 位作者 Jianmin Yuan Jianru Deng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期308-316,共9页
To simplify the composite propellant formulation and address the current issue of the single-functionality present in existing additives,the multi-cyano,amine-based polybutadiene(AEHTPB-CN)was prepared based on AEHTPB... To simplify the composite propellant formulation and address the current issue of the single-functionality present in existing additives,the multi-cyano,amine-based polybutadiene(AEHTPB-CN)was prepared based on AEHTPB by adopting appropriate synthesis strategies.By replacing 10% of HTPB binder in the propellant formulation,it can effectively enhance the interfacial bond strength between the propellant binder matrix and solid fillers(AP(ammonium perchlorate)and RDX(cyclotrimethylene-trinitramine)),the mechanical properties of the HTPB/AP/RDX/Al propellant were superior to blank control propellant with an improvement of 35.4% in tensile strength,62.0% enhancement in elongation at break,and reduce the propellant burn rate by 10.7% with any energy loss.The function mechanism of AEHTPB-CN was systematically elucidated through experiments and computer simulation techniques.The results show that the tertiary amine group in AEHTPB-CN can react with AP to form ammonium ionic bonds,and the hydroxyl and cyano groups can form hydrogen bonding interactions with AP,which enables AEHTPB-CN to be firmly adsorbed on the AP surface through chemical and physical interactions.For RDX,the interfacial bonding effect of AEHTPB-CN is attributed to their ability to form C-H···N≡C weak hydrogen bonding interaction between the cyano group and RDX methylene group. 展开更多
关键词 Hydroxyl-terminated polybutadiene(HTPB) HTPB propellant Chemical modification Bonding agent MECHANISM
在线阅读 下载PDF
Syntheses and properties of associative acrylamide copolymers containing short hydrophobic chains used in a friction reducer for slick-water fracturing
16
作者 Ya-Xing Dai Xian-Li Zhang +6 位作者 Si-Yuan Liu Feng-Run-Ze Zhang Yi-Xi Zhang Yu-Tong Sang Jing-Xi Zheng Zhao-Sheng Liu Peng Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1889-1901,共13页
Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacr... Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities. 展开更多
关键词 Shale gas Slick water Drag reducer Modified monomer COPOLYMERIZATION
在线阅读 下载PDF
Ni/ZSM-5 Catalysts for Light Olefin Oligomerization:Effects of Supports and Ni Sites on Activity and Selectivity
17
作者 Zuo Qi Liang Ke +5 位作者 Ma Yirong Jia Yangxiao Liao Mingjie Zheng Jiajun Li Ruifeng Li Wenlin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期15-23,共9页
A series of Ni/ZSM-5 containing a small amount of Ni was prepared by an ion exchanged method.The impact of the n(SiO_(2))/n(Al_(2)O_(3))ratio on the catalytic activity was studied using the samples 0.09Ni/ZSM-5(60)and... A series of Ni/ZSM-5 containing a small amount of Ni was prepared by an ion exchanged method.The impact of the n(SiO_(2))/n(Al_(2)O_(3))ratio on the catalytic activity was studied using the samples 0.09Ni/ZSM-5(60)and 0.09Ni/ZSM-5(130).To determine the interaction between the Ni species and acid sites on the surface of the catalyst,the catalysts were characterized by N2 adsorption-desorption,X-ray diffraction(XRD),scanning electron microscopy(SEM),and UV-vis spectroscopy.The performance of the catalysts for the catalytic oligomerization of 1-hexene was investigated in detail.The nickel species were found to be uniformly distributed in all the catalysts.It was discovered that the oligomerization activity of the catalyst can be improved using Ni species;however,the contribution of Brønsted acids in oligomerization reactions is greater than that of Ni sites and Lewis acids. 展开更多
关键词 nickel ZEOLITE acid sites OLIGOMERIZATION catalyst
在线阅读 下载PDF
Investigation into IgG/IgE binding capacity and gut microbiota of digestion products derived from glycated ovalbumin
18
作者 Jihua Mao Yanhong Shao +2 位作者 Hui Wang Jun Liu Zongcai Tu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3633-3641,共9页
Gut microbiota plays an important role in food allergy.The immunoglobulin G(IgG)/immunoglobulin E(IgE)binding capacity and human gut microbiota changes of digestion products derived from glycated ovalbumin(OVA)were in... Gut microbiota plays an important role in food allergy.The immunoglobulin G(IgG)/immunoglobulin E(IgE)binding capacity and human gut microbiota changes of digestion products derived from glycated ovalbumin(OVA)were investigated.Gastrointestinal digestion effectively destroyed the primary structure of glycated OVA,resulting in a significantly higher digestibility than gastric digestion,and more abundant peptides<3 kDa.Moreover,gastric and gastrointestinal digestion products have different fluorescence quenching and red shift of fluorescence peaks,and possess different conformational structures.These changes resulted in a decrease in 28.7%of the IgE binding capacity of gastrointestinal digestion products beyond that of pepsin.Moreover,gastrointestinal digestion products of glycated OVA increased significantly the proportion of Subdoligranulum,Collinsella,and Bifidobacterium.Therefore,gastrointestinal digestion products of glycated OVA altered human intestinal microbiota,reducing the risk of potential allergy. 展开更多
关键词 OVALBUMIN Glycation DIGESTION IgG/IgE binding capacity Gut microbiota
在线阅读 下载PDF
In-situ regeneration of Bi^(0) active site to renew surface activation for long-term stable and efficient CO_(2)-to-formate electrosynthesis
19
作者 Haichuan He Congcheng Yang +6 位作者 Liu Deng Li Luo Yahui Jiang Liqiang Wang Yi Zhang Minghui Yang You-Nian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期703-711,共9页
CO_(2)-to-formate electrosynthesis with high selectivity and stability has been a long-sought objective.Unfortunately,most catalysts undergo structural and valence state changes due to surface oxidation during operati... CO_(2)-to-formate electrosynthesis with high selectivity and stability has been a long-sought objective.Unfortunately,most catalysts undergo structural and valence state changes due to surface oxidation during operation or storage,resulting in decreased catalytic performance.Herein,we report a efficient and stable BiIn@Cu-foam electrode through the in-situ regeneration of Bi^(0) active sites to renew the surface activation.The electronic structure of Bi site can be regulated by introducing In,thereby enhancing the adsorption strength of*OCHO.The optimized electrode exhibits over 90%FE_(formate)at a wide potential window(-0.9–-2.2 V),and formation rate for 3.15 mM cm^(-1)h^(-1).Especially,the electrode can maintain the high performance at continuously electrolysis for more than 300 h,or for more than 50 cycles,even repeated operation and storage for more than 2 years.This work provides a promising candidate and new insight to construct industrially viable stable Bi-based catalyst for formate electrosynthesis. 展开更多
关键词 In-situ regeneration Stability FORMATE BISMUTH eCO_(2)RR
在线阅读 下载PDF
Facile preparation and efficient MnxCoy porous nanosheets for the sustainable catalytic process of soot
20
作者 Miaomiao Hu Kun Zhou +8 位作者 Tingyi Zhao Zheng Li Xianhai Zeng Di Yu Xuehua Yu Mingqin Zhao Zhihui Shao Qixiang Xu Bing Cui 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期516-528,共13页
The pursuit of high-performance is worth considerable effort in catalysis for energy efficiency and environmental sustainability. To develop redox catalysts with superior performance for soot combustion, a series of M... The pursuit of high-performance is worth considerable effort in catalysis for energy efficiency and environmental sustainability. To develop redox catalysts with superior performance for soot combustion, a series of Mn_(x)Co_(y) oxides were synthesized using MgO template substitution.This method greatly improves the preparation and catalytic efficiency and is more in line with the current theme of green catalysts and sustainable development. The resulting Mn_(1)Co_(2.3) has a strong activation capability of gaseous oxygen due to a high concentration of Co^(3+) and Mn^(3+). The Mn doping enhanced the intrinsic activity by prompting oxygen vacancy formation and gaseous oxygen adsorption. The nanosheet morphology with abundant mesoporous significantly increased the solid–solid contact efficiency and improved the adsorption capability of gaseous reactants. The novel design of Mn_(1)Co_(2.3)oxide enhanced its catalytic performance through a synergistic effect of Mn doping and the porous nanosheet morphology, showing significant potential for the preparation of high-performance soot combustion catalysts. 展开更多
关键词 Soot combustion Intrinsic activity Contact efficiency Mn doping DFT
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部