期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
Influence of the mechanical properties of materials on the ultimate pressure-bearing capability of a pressure-preserving controller
1
作者 Xiao-Jun Shi He-Ping Xie +5 位作者 Cong Li Gui-Kang Liu Zi-Jie Wei Tian-Yu Wang Ju Li Qiu-Yue Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3558-3574,共17页
The pressure-preserving controller is the core part of deep in-situ pressure-preserving coring(IPP-Coring) system, and its pressure-preserving capability is the key to IPP-Coring technology. To achieve a good understa... The pressure-preserving controller is the core part of deep in-situ pressure-preserving coring(IPP-Coring) system, and its pressure-preserving capability is the key to IPP-Coring technology. To achieve a good understanding of the influence of mechanical properties of materials on the ultimate pressure-bearing capability(UPB-Capability) of the pressure-preserving controller, the IPP-Coring experimental platform was developed to test the UPB-Capability of pressure-preserving controllers of four different materials. The experimental results show that the UPB-Capability of pressure-preserving controllers with different material varies greatly. A numerical model of the pressure-preserving controller was developed to study the influences of mechanical parameters of materials on the UPB-Capability of the pressurepreserving controller after the accuracy of the numerical model is verified by experiments. The results indicate that the yield strength(YS) and Poisson's ratio(PR) of the material have little effect on the UPB-Capability of the pressure-preserving controller, whereas the elastic modulus(EM) of the material has a significant effect. A generalized model of the UPB-Capability of the pressure-preserving controller is developed to reveal the mechanism of the influence of material properties on the UPB-Capability of the pressure-preserving controllers. Considering these results, the future optimization direction of the pressure-preserving controller and material selection scheme in practical engineering applications of the pressure-preserving controller are suggested. 展开更多
关键词 In-situ pressure-preserving coring Pressure-preserving controller Material properties Ultimate pressure-bearing capability
在线阅读 下载PDF
Engineering electrolyte additives for stable zinc-based aqueous batteries:Insights and prospects
2
作者 Tao Liu Xusheng Dong +7 位作者 Bin Tang Ruizheng Zhao Jie Xu Hongpeng Li Shasha Gao Yongzheng Fang Dongliang Chao Zhen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期311-326,共16页
Zn-based aqueous batteries(ZABs) are gaining widespread popularity due to their low cost and high safety profile. However, the application of ZABs faces significant challenges, such as dendrite growth and parasitic re... Zn-based aqueous batteries(ZABs) are gaining widespread popularity due to their low cost and high safety profile. However, the application of ZABs faces significant challenges, such as dendrite growth and parasitic reactions of metallic Zn anodes. Therefore, achieving high-energy–density ZABs necessitates addressing the fundamental thermodynamics and kinetics of Zn anodes. Various strategies are available to mitigate these challenges, with electrolyte additive engineering emerging as one of the most efficient and promising approaches. Despite considerable research in this field, a comprehensive understanding of the intrinsic mechanisms behind the high performance of electrolyte additives remains limited. This review aims to provide a detailed introduction to functional electrolyte additives and thoroughly explore their underlying mechanisms. Additionally, it discusses potential directions and perspectives in additive engineering for ZABs, offering insights into future development and guidelines for achieving high-performance ZABs. 展开更多
关键词 Aqueous batteries Zn anodes Electrolyte additive engineering Interfacial chemistry Electrochemical mechanisms
在线阅读 下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
3
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
在线阅读 下载PDF
Ultrasensitive Chemiresistive Gas Sensors Based on Dual-Mesoporous Zinc Stannate Composites for Room Temperature Rice Quality Monitoring
4
作者 Jinyong Xu Xuxiong Fan +3 位作者 Kaichun Xu Kaidi Wu Hanlin Liao Chao Zhang 《Nano-Micro Letters》 2025年第5期359-373,共15页
The integration of dual-mesoporous structures,the construction of heterojunctions,and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors.Nonetheless,achie... The integration of dual-mesoporous structures,the construction of heterojunctions,and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors.Nonetheless,achieving an optimal design that simultaneously combines mesoporous structures,precise heterojunction modulation,and controlled oxygen vacancies through a one-step process remains challenging.This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.As a proof of concept,the resulting zinc stannate-based coatings are applied to detect 2-undecanone,a key biomarker for rice aging.Remarkably,the zinc oxide/zinc stannate heterojunctions with a well-defined secondary pore structure exhibit exceptional gas-sensing performance for 2-undecanone at room temperature.Furthermore,practical experiments indicate that the developed sensor effectively identifies adulteration in various rice varieties.These results underscore the potential of this method for designing metal oxides with tailored properties for high-performance gas sensors.The enhanced adsorption capacity and dual-mesoporous features of this semiconductor make it a promising candidate for sensing applications in agricultural food safety inspections. 展开更多
关键词 Zinc stannate SEMICONDUCTORS Dual-mesoporous structure Gas sensor Biomarker sensing
在线阅读 下载PDF
Interfacial Zn^(2+)-solvation regulator towards reversible and stable Zn anode
5
作者 Miao Zhou Xiongbin Luo +7 位作者 Hang Li Shan Guo Zhuang Tong Xiaotao Zhou Xu Li Zhaohui Hou Shuquan Liang Guozhao Fang 《Journal of Energy Chemistry》 2025年第1期684-692,共9页
Aqueous zinc-ion batteries (AZIBs) are fundamentally challenged by the instability of the electrode/electrolyte interface,predominantly due to irreversible zinc (Zn) deposition and hydrogen evolution.Particularly,the ... Aqueous zinc-ion batteries (AZIBs) are fundamentally challenged by the instability of the electrode/electrolyte interface,predominantly due to irreversible zinc (Zn) deposition and hydrogen evolution.Particularly,the intricate mechanisms behind the electrochemical discrepancies induced by interfacial Zn^(2+)-solvation and deposition behavior demand comprehensive investigation.Organic molecules endowed with special functional groups (such as hydroxyl,carboxyl,etc.) have the potential to significantly optimize the solvation structure of Zn^(2+)and regulate the interfacial electric double layer (EDL).By increasing nucleation overpotential and decreasing interfacial free energy,these functional groups facilitate a lower critical nucleation radius,thereby forming an asymptotic nucleation model to promote uniform Zn deposition.Herein,this study presents a pioneering approach by introducing trace amounts of n-butanol as solvation regulators to engineer the homogenized Zn (H-Zn) anode with a uniform and dense structure.The interfacial reaction and structure evolution are explored by in/ex-situ experimental techniques,indicating that the H-Zn anode exhibits dendrite-free growth,no by-products,and weak hydrogen evolution,in sharp contrast to the bare Zn.Consequently,the H-Zn anode achieves a remarkable Zn utilization rate of approximately 20% and simultaneously sustains a prolonged cycle life exceeding 500 h.Moreover,the H-Zn//NH_(4)V_(4)O^(10)(NVO) full battery showcases exceptional cycle stability,retaining 95.04%capacity retention after 400 cycles at a large current density of 5 A g^(-1).This study enlightens solvation-regulated additives to develop Zn anode with superior utilization efficiency and extended operational lifespan. 展开更多
关键词 Aqueous zinc-ion batteries Zn^(2+)-solvation structure Interfacial reaction Asymptotic nucleation model Reversible and stable Zn anode
在线阅读 下载PDF
A New Chaotic Genetic Hybrid Algorithm and Its Applications in Mechanical Optimization Design 被引量:1
6
作者 王仲民 戴怡 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第3期220-224,共5页
A new chaotic genetic hybrid algorithm(CGHA) based on float point coding was put forward in this paper.Firstly,it used chaos optimization to search coarsely and produced a better initial population.Then,a power functi... A new chaotic genetic hybrid algorithm(CGHA) based on float point coding was put forward in this paper.Firstly,it used chaos optimization to search coarsely and produced a better initial population.Then,a power function carrier was adopted to improve the ergodicity and the sufficiency of the chaos optimization.Secondly,the genetic algorithm(GA) was used to search finely and guaranteed the population's evolution.To avoid the search being trapped in local minimum,a chaos degenerate mutation operator was designed to make the search converge to a global optimum quickly.Finally,CGHA was used to solve a typical mechanical optimization problem of shear stress checking for a cylinder helix spring.Compared with traditional penalty function method,chaos-Powell hybrid algorithm and standard GA,CGHA shows better performance in solution precision and convergence speed than those of the algorithms.Therefore,CGHA is a new effective way to solve the problems in mechanical optimization design. 展开更多
关键词 machinery design cylinder helix spring shear stress checking CGHA GA optimization
在线阅读 下载PDF
A Hydrodynamic Model for Dimpled Mechanical Gas Seal Considering Interaction Effect 被引量:1
7
作者 时礼平 黄巍 王晓雷 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第4期438-445,共8页
The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dim... The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dimpled annular area of mechanical gas seal considering the″interaction effect″between adjacent dimples is developed based on the Reynolds equation.Different multi-row columns are chosen and the dimensionless pressure in radial and circumferential directions is calculated.The results indicate that the″interaction effect″is more obvious in the circumferential direction than in the radial direction,even when the area and depth of the dimples are same.Moreover,for the 5×5column,the dimensionless average pressure considering the″interaction effect″increases by45.41% compared with the 1×5column.Further analysis demonstrates that the model with the 5×5column can be more reasonable with the consideration of reducing the calculation error caused by boundary conditions to investigate the hydrodynamic effect for dimpled mechanical gas seal. 展开更多
关键词 surface texture mechanical gas seal hydrodynamic effect interaction effect aero engine
在线阅读 下载PDF
A perspective of microplasma oxidation (MPO) and vapor deposition coatings in surface engineering of aluminum alloys 被引量:1
8
作者 AWAD Samir Hamid 《Journal of Chongqing University》 CAS 2004年第2期4-11,共8页
Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ... Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well. 展开更多
关键词 aluminum alloys microplasma oxidation (MPO) duplex coating physical vapor deposition (PVD) plasma assisted chemical vapor deposition (PACVD)
在线阅读 下载PDF
Effect of deposition parameters on mechanical properties of TiN films coated on 2A12 aluminum alloys by arc ion plating (AIP) 被引量:1
9
作者 AWAD Samir Hamid 《Journal of Chongqing University》 CAS 2005年第1期28-32,共5页
TiN films were deposited on 2A12 aluminum alloy by arc ion plating (AIP). The Vickers hardness of the films deposited at different bias voltages and different nitrogen gas pressures, and that of the substrate were mea... TiN films were deposited on 2A12 aluminum alloy by arc ion plating (AIP). The Vickers hardness of the films deposited at different bias voltages and different nitrogen gas pressures, and that of the substrate were measured. The surface roughness of the TiN films diposited at –30 V and –80 V respectively and at different nitrogen gas pressure was measured also. The mass loss of TiN films deposited at 0 V, –30 V and –80 V respectively were analyzed in dry sand rubber wheel abrasive wear tests and wet ones in comparison with uncoated Al alloy and austenitic stainless steel (AISI 316L). It is revealed that the highest hardness of the TiN film is obtained at a bias voltage of –30 V and a N2 gas pressure of 0.5 Pa. The surface roughness of the film is larger at –80 V than that at –30 V and reduces as the increase of the N2 gas pressure. The mass loss of TiN-film coated 2A12 aluminum alloy is remarkably less than that of uncoated Al alloy and also that of AISI 316L, which indicates that the abrasive wear rate is greatly reduced by the application of TiN coating. TiN coating deposited by arc ion plating (AIP) technique on aluminum alloy can be a potential coating for machine parts requiring preciseness and lightness. 展开更多
关键词 aluminum alloys arc ion plating HARDNESS wear resistance TiN film.
在线阅读 下载PDF
An efficient SPH methodology for modelling mechanical characteristics of particulate composites 被引量:1
10
作者 Z.J.Zheng S.Kulasegaram +1 位作者 P.Chen Y.Q.Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期135-146,共12页
Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical,automobile,aerospace including defence technology.Variety of modelling techniques have been a... Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical,automobile,aerospace including defence technology.Variety of modelling techniques have been adopted in the past to model mechanical behaviour of particulate composites.Due to their favourable properties,particle-based methods provide a convenient platform to model failure or fracture of these composites.Smooth particle hydrodynamics(SPH)is one of such methods which demonstrate excellent potential for modelling failure or fracture of particulate composites in a Lagrangian setting.One of the major challenges in using SPH method for modelling composite materials depends on accurate and efficient way to treat interface and boundary conditions.In this paper,a masterslave method based multi-freedom constraints is proposed to impose essential boundary conditions and interfacial displacement constraints in modelling mechanical behaviour of composite materials using SPH method.The proposed methodology enforces the above constraints more accurately and requires only smaller condition number for system stiffness matrix than the procedures based on typical penalty function approach.A minimum cut-off value-based error criteria is employed to improve the computational efficiency of the proposed methodology.In addition,the proposed method is further enhanced by adopting a modified numerical interpolation scheme along the boundary to increase the accuracy and computational efficiency.The numerical examples demonstrate that the proposed master-slave approach yields better accuracy in enforcing displacement constraints and requires approximately the same computational time as that of penalty method. 展开更多
关键词 Particulate composites SPH Essential boundary condition Multi-point constraints Master-slave method
在线阅读 下载PDF
An efficient numerical approach to electrostatic microelectromechanical system simulation
11
作者 李普 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4769-4776,共8页
Computational analysis of electrostatic microelectromechanical systems (MEMS) requires an electrostatic analysis to compute the electrostatic forces acting on micromechanical structures and a mechanical analysis to ... Computational analysis of electrostatic microelectromechanical systems (MEMS) requires an electrostatic analysis to compute the electrostatic forces acting on micromechanical structures and a mechanical analysis to compute the deformation of micromechanical structures. Typically, the mechanical analysis is performed on an undeformed geometry. However, the electrostatic analysis is performed on the deformed position of microstructures. In this paper, a new efficient approach to self-consistent analysis of electrostatic MEMS in the small deformation case is presented. In this approach, when the microstructures undergo small deformations, the surface charge densities on the deformed geometry can be computed without updating the geometry of the microstructures. This algorithm is based on the linear mode shapes of a microstructure as basis functions. A boundary integral equation for the electrostatic problem is expanded into a Taylor series around the undeformed configuration, and a new coupled-field equation is presented. This approach is validated by comparing its results with the results available in the literature and ANSYS solutions, and shows attractive features comparable to ANSYS. 展开更多
关键词 microelectromechanical systems SELF-CONSISTENT boundary element method
在线阅读 下载PDF
Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites
12
作者 Xiao-yuan Zheng Zhi-ying Ren +2 位作者 Hong-bai Bai Zhang-bin Wu You-song Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期120-136,共17页
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre... Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites. 展开更多
关键词 Entangled metallic wire material Composites materials Damping property STIFFNESS Fatigue characteristics
在线阅读 下载PDF
基于BLBL模型的超声波在钻井液中的传播衰减规律 被引量:1
13
作者 刘刚 马飞 +6 位作者 凡朝波 解聪 杨国昊 翟喜桐 徐洪 倪维军 殷瑜萱 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第3期58-64,共7页
通过BLBL声波衰减模型,并利用MATLAB进行数值模拟,探究了超声波在不同性质钻井液中的传播衰减规律。研究结果表明,超声波频率的增加会加剧钻井液中超声波的衰减,其衰减呈现先下降后上升的趋势,且频率越高,上升速度越快;同时,钻井液黏度... 通过BLBL声波衰减模型,并利用MATLAB进行数值模拟,探究了超声波在不同性质钻井液中的传播衰减规律。研究结果表明,超声波频率的增加会加剧钻井液中超声波的衰减,其衰减呈现先下降后上升的趋势,且频率越高,上升速度越快;同时,钻井液黏度、温度、体积浓度的增加均导致超声波衰减程度增加;运用正交试验研究后发现,4种因素对超声波衰减的影响程度排序为:钻井液黏度>钻井液温度>超声波频率>钻井液体积浓度。该研究结果为超声波在钻井液测量中的应用提供了理论支持和指导。 展开更多
关键词 钻井液 超声波衰减 超声波频率 粒径 温度 黏度 BLBL模型
在线阅读 下载PDF
Thermal safety boundary of lithium-ion battery at different state of charge 被引量:1
14
作者 Hang Wu Siqi Chen +8 位作者 Yan Hong Chengshan Xu Yuejiu Zheng Changyong Jin Kaixin Chen Yafei He Xuning Feng Xuezhe Wei Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期59-72,共14页
Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg... Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems. 展开更多
关键词 Lithium-ion battery Battery safety Thermal runaway State of charge Numerical analysis
在线阅读 下载PDF
Valorization of Camellia oleifera oil processing byproducts to value-added chemicals and biobased materials: A critical review 被引量:4
15
作者 Xudong Liu Yiying Wu +11 位作者 Yang Gao Zhicheng Jiang Zicheng Zhao Wenquan Zeng Mingyu Xie Sisi Liu Rukuan Liu Yan Chao Suli Nie Aihua Zhang Changzhu Li Zhihong Xiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期28-53,共26页
The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,bi... The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed. 展开更多
关键词 Camellia oleifera shell Camellia oleifera cake Value-added chemicals Bioactive components Biobased materials
在线阅读 下载PDF
Physics-based battery SOC estimation methods:Recent advances and future perspectives 被引量:1
16
作者 Longxing Wu Zhiqiang Lyu +2 位作者 Zebo Huang Chao Zhang Changyin Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期27-40,I0003,共15页
The reliable prediction of state of charge(SOC)is one of the vital functions of advanced battery management system(BMS),which has great significance towards safe operation of electric vehicles.By far,the empirical mod... The reliable prediction of state of charge(SOC)is one of the vital functions of advanced battery management system(BMS),which has great significance towards safe operation of electric vehicles.By far,the empirical model-based and data-driven-based SOC estimation methods of lithium-ion batteries have been comprehensively discussed and reviewed in various literatures.However,few reviews involving SOC estimation focused on electrochemical mechanism,which gives physical explanations to SOC and becomes most attractive candidate for advanced BMS.For this reason,this paper comprehensively surveys on physics-based SOC algorithms applied in advanced BMS.First,the research progresses of physical SOC estimation methods for lithium-ion batteries are thoroughly discussed and corresponding evaluation criteria are carefully elaborated.Second,future perspectives of the current researches on physics-based battery SOC estimation are presented.The insights stated in this paper are expected to catalyze the development and application of the physics-based advanced BMS algorithms. 展开更多
关键词 Lithium-ion batteries State of charge Electrochemical model Battery management system
在线阅读 下载PDF
Influence of liquid film shape on evaporation performance of agitated thin film evaporator
17
作者 顾鑫强 黄瑶 +1 位作者 邹鲲 彭倚天 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期305-314,共10页
The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of ... The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process. 展开更多
关键词 liquid film shape shear-thinning fluids flow characteristics evaporative heat transfer
在线阅读 下载PDF
Wafer Defect Map Pattern Recognition Based on Improved ResNet
18
作者 YANG Yining WEI Honglei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期81-88,共8页
The defect detection of wafers is an important part of semiconductor manufacturing.The wafer defect map formed from the defects can be used to trace back the problems in the production process and make improvements in... The defect detection of wafers is an important part of semiconductor manufacturing.The wafer defect map formed from the defects can be used to trace back the problems in the production process and make improvements in the yield of wafer manufacturing.Therefore,for the pattern recognition of wafer defects,this paper uses an improved ResNet convolutional neural network for automatic pattern recognition of seven common wafer defects.On the basis of the original ResNet,the squeeze-and-excitation(SE)attention mechanism is embedded into the network,through which the feature extraction ability of the network can be improved,key features can be found,and useless features can be suppressed.In addition,the residual structure is improved,and the depth separable convolution is added to replace the traditional convolution to reduce the computational and parametric quantities of the network.In addition,the network structure is improved and the activation function is changed.Comprehensive experiments show that the precision of the improved ResNet in this paper reaches 98.5%,while the number of parameters is greatly reduced compared with the original model,and has well results compared with the common convolutional neural network.Comprehensively,the method in this paper can be very good for pattern recognition of common wafer defect types,and has certain application value. 展开更多
关键词 ResNet deep learning machine vision wafer defect map pattern recogniton
在线阅读 下载PDF
Research status and challenges in the manufacturing of IR conformal optics
19
作者 Jianbo Zhao Sheng Wang +2 位作者 Chunyu Zhang Jinhu Wang Qingliang Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期154-172,共19页
The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,a... The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,and added value for aircraft.Through the past decades,remarkable advances have been achieved in manufacturing technologies for conformal windows,where the machining accuracy approaches the nanometer level,and the surface form becomes more complex.These advances are critical to aircraft development,and these manufacturing technologies also have significant reference values for other directions of the ultra-precision machining field.In this review,the infrared materials suitable for manufacturing conformal windows are introduced and compared with insights into their performances.The remarkable advances and concrete work accomplished by researchers are reviewed.The challenges in manufacturing conformal windows that should be faced in the future are discussed. 展开更多
关键词 Conformal optics Window and dome Infrared material Ultra-precision grinding POLISHING Measurement
在线阅读 下载PDF
Research on Automatic Test System of Engine Blade Natural Frequency
20
作者 LU Yonghua LIU Jingjing +2 位作者 YANG Haibo HUANG Chuan MA Zhicheng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期476-487,共12页
Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ... Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision. 展开更多
关键词 BLADE vibration failure natural frequency automatic test system
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部