期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Chemical-looping gasification of biomass in a 10 kW_(th) interconnected fluidized bed reactor using Fe_2O_3/Al_2O_3 oxygen carrier 被引量:9
1
作者 HUSEYIN Sozen WEI Guo-qiang +2 位作者 LI Hai-bin HE Fang HUANG Zhen 《燃料化学学报》 EI CAS CSCD 北大核心 2014年第8期922-931,共10页
Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas... Abstract:The aim of this research is to design and operate a 10 kW hot chemical-looping gasification(CLG)unit using Fe2O3/Al2O3as an oxygen carrier and saw dust as a fuel.The effect of the operation temperature on gas composition in the air reactor and the fuel reactor,and the carbon conversion of biomass to CO2and CO in the fuel reactor have been experimentally studied.A total60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina.The results show that CO and H2concentrations are increased with increasing temperature in the fuel reactor.It is also found that with increasing fuel reactor temperature,both the amount of residual char in the fuel reactor and CO2concentration of the exit gas from the air reactor are degreased.Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2production at 870℃reaches the highest rate.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles.The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly. 展开更多
关键词 chemical-looping gasification hot model BIOMASS Fe2O3/Al2O3 dual circulating fluidized bed
在线阅读 下载PDF
Effect of Bacillus subtilis and Pseudomonas fluorescens on Growth of Greenhouse Tomato and Rhizosphere Microbial Community 被引量:2
2
作者 Ge Xiao-ying He Chun-e +1 位作者 Li Tao Ouyang Zhu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2015年第3期32-42,共11页
Bacillus subtilis (B. subtilis) and Pseudomonas fluorescens (P. fluorescens) are two of the most important plant growth promoting rhizobacteria (PGPR) in agriculture. An in situ trial was conducted on greenhouse... Bacillus subtilis (B. subtilis) and Pseudomonas fluorescens (P. fluorescens) are two of the most important plant growth promoting rhizobacteria (PGPR) in agriculture. An in situ trial was conducted on greenhouse tomato (Lycopersicum esculentum Mill.) to examine the effect of two bacterial strains, Bacillus subtilis (CGMCC 1.3343) and Pseudomonas fluorescens (CGMCC 1.1802), on tomato growth, gray mold disease control, catabolic and genetic microbial features of indigenous rhizosphere bacteria under lownitrogen conditions. A commercial inoculant (ETS) was also tested as a comparison. Both B. subtilis and P. fluorescens promoted growth and biomass of seedlings, while only B. subtilis was efficient in reducing gray mold incidence in greenhouse tomato. The two bacterial strains could colonization in tomato rhizosphere soil at the end of experiment (10 days after the last inoculation). Different AWCD trends and DGGE patterns were got in different bacterial treatments; however, analyses of microbial diversities showed that indigenous soil microbes did not seem to have significant differences at either the catabolic or genetic level among treatments. ETS, as a commercial microbial agent, promoted plant growth and gave a higher microbial diversity in rhizosphere soil. 展开更多
关键词 greenhouse tomato Bacillus subtilis Pseudomonasfluorescens qPCR BIOLOG PCR-DGGE
在线阅读 下载PDF
Retraction note to “Development and characterization of hot dip aluminide coated stainless steel 316L”(J. Cent. South Univ., 10.1007/s11771-018-3937-y) 被引量:2
3
作者 Sehrish MUKHTAR Waqas ASGHAR +3 位作者 Zubair BUTT Zaheer ABBAS Mudaser ULLAH Rana ATTA-UR-REHMAN 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2792-2792,共1页
The Editor-in-Chief has retracted this article [1] because Figures 11 and 12 appear to be identical with Figures 3 and 4respectively from a previously published article [2].Sehrish MUKHTAR,Waqas ASGHAR,Zubair BUTT,Zah... The Editor-in-Chief has retracted this article [1] because Figures 11 and 12 appear to be identical with Figures 3 and 4respectively from a previously published article [2].Sehrish MUKHTAR,Waqas ASGHAR,Zubair BUTT,Zaheer ABBAS,Mudaser ULLAH and Rana ATTA-UR-REHMAN did not respond to correspondence about this retraction. 展开更多
关键词 steel aluminide DIP
在线阅读 下载PDF
Development and characterization of hot dip aluminide coated stainless steel 316L
4
作者 Sehrish MUKHTAR Waqas ASGHAR +3 位作者 Zubair BUTT Zaheer ABBAS Mudaser ULLAH Rana ATTA-UR-REHMAN 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2578-2588,共11页
Stainless steel(SS)grade 316L is used for orthopedic implants due to its biocompatibility;yet the effort should be done to minimize the carcinogenic and inflammatory effects related to SS 316L implants.In this researc... Stainless steel(SS)grade 316L is used for orthopedic implants due to its biocompatibility;yet the effort should be done to minimize the carcinogenic and inflammatory effects related to SS 316L implants.In this research,aluminide coating of Al–Si alloy on SS 316L is characterized by using optical microscopy,energy dispersive spectroscopy(EDS),nano-indentation and corrosion testing technique.Hot dip aluminizing process is used to coat the SS 316L specimens at 765°C for 2 min immersion time.Half of the specimens are also diffusion treated in a Muffle furnace at 550°C for 4 h to produce diffused specimens of SS 316L.Microstructural examination shows the formation of flat coating/substrate interface due to Si addition.EDS analysis confirms the formation of complex intermetallic at the coating/substrate interface which finally results in increasing the hardness and corrosion resistance properties of coating. 展开更多
关键词 stainless steel aluminide coating MICROSTRUCTURE INTERMETALLICS nano-indentation corrosion testing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部