期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
1
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy C-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部