Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with li...Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.展开更多
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne...Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.展开更多
High-performance thermoplastic composites have been developed as significant structural materials for cutting-edge equipment in the aerospace and defence fields.However,the internal mechanism of processing parameters ...High-performance thermoplastic composites have been developed as significant structural materials for cutting-edge equipment in the aerospace and defence fields.However,the internal mechanism of processing parameters on mechanical properties in the manufacturing process of thermoplastic composite structures is still a serious challenge.The purpose of this study is to investigate the process/crystallization/property relationships for continuous carbon fiber(CF)reinforced polyether-ether-ketone(PEEK)composites.The composite laminates are fabricated according to orthogonal experiments via the thermoforming method.The mechanical performance is investigated in terms of crystallization properties and fracture morphology characterizations.Experimental results show that the mechanical performance and crystallization properties of thermoplastic composites are significantly affected by the coupling of processing parameters.The increased molding temperature,pressure,and holding time improve the degree of fiber/matrix infiltration and affect the crystallinity and crystalline morphology of the matrix,which further influences the mechanical properties of the composites.This is reflected in the test results that crystallinity has an approximately linear effect on mode-I interlaminar fracture toughness and transverse flexural modulus.As well as the higher molding temperature can destroy the pre-existent crystals to improve the toughness of the matrix,and the well-defined crystalline structures can be observed when fabricated at higher temperatures and longer periods of holding time.展开更多
We report a cesium vapor laser with fundamental mode output and a wavelength of 894 nm. The laser is pumped by a laser diode array with an external cavity of a holographic grating by using Littrow's structure. A slop...We report a cesium vapor laser with fundamental mode output and a wavelength of 894 nm. The laser is pumped by a laser diode array with an external cavity of a holographic grating by using Littrow's structure. A slope efbciency of 22.4% is obtained by using a pumping source with a linewidth of 0.26 nm and 80 kPa methane as the buffer gas. The threshold pumping power is 1.56 W.展开更多
This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature ...This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature as well as reduce the influence of resistance-temperature dependency.Considering the degraded circuit performance caused by the process deviation,the trimmable module of the temperature coefficient(TC)is introduced to improve the circuit stability.The circuit has the advantages of simple structure,high linear stability,high TC accuracy,and trimmable TC.It consumes an area of 0.09 mm^(2)when fabricated by using the 0.25-μm complementary metal-oxide-semiconductor(CMOS)process.The proposed circuit achieves the simulated power supply rejection(PSR)of about-78.7 dB@1 kHz,the measured TC of~4.7 ppm/℃over a wide temperature range from-55℃to 125℃with the 2.5-V single-supply voltage,and the tested line regulation of 0.10 mV/V.Such a high-performance bandgap reference circuit can be widely applied in high-precision and high-reliability electronic systems.展开更多
The excellent remote sensing ability of synthetic aperture radar(SAR)will be misled seriously when it encounters deceptive jamming which possesses high fidelity and fraudulence.In this paper,the dynamic synthetic aper...The excellent remote sensing ability of synthetic aperture radar(SAR)will be misled seriously when it encounters deceptive jamming which possesses high fidelity and fraudulence.In this paper,the dynamic synthetic aperture(DSA)scheme is used to extract the difference between the true and false targets.A simultaneous deceptive jamming suppression and target reconstruction method is proposed for a single channel SAR system to guarantee remote sensing ability.The system model is formulated as a sparse signal recovery problem with an unknown parametric dictionary to be estimated.An iterative reweighted method is employed to jointly handle the dictionary parameter learning and target reconstruction problem in an majorization-minimization framework,where a surrogate function majorizing the Gaussian entropy in the objective function is introduced to circumvent its non-convexity.After dictionary parameter learning,the grid mismatching problem in a fixed grid based method is avoided.Therefore,the proposed method can reap a super resolution result.Besides,a simple yet effective DSA section scheme is developed for the SAR data excerpting,in which only two DSAs are required.Experimental results about location error and reconstruction power error reveal that the proposed method is able to achieve a good performance in deceptive jamming suppression.展开更多
The Solar Polar ORbit Telescope(SPORT) project for space weather mission has been under intensive scientific and engineering background studies since it was incorporated into the Chinese Space Science Strategic Pionee...The Solar Polar ORbit Telescope(SPORT) project for space weather mission has been under intensive scientific and engineering background studies since it was incorporated into the Chinese Space Science Strategic Pioneer Project in 2011.SPORT is designed to carry a suite of remote-sensing and in-situ instruments to observe Coronal Mass Ejections(CMEs),energetic particles,solar high-latitude magnetism,and the fast solar wind from a polar orbit around the Sun.The first extended view of the polar regions of the Sun and the ecliptic enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere,and the solar high-latitude magnetism giving rise to eruptions and the fast solar wind.Coordinated observations between SPORT and other spaceborne/ground-based facilities within the International Living With a Star(ILWS) framework can significantly enhance scientific output.SPORT is now competing for official selection and implementation during China's 13 th Five-Year Plan period of 2016-2020.展开更多
One-bit quantization is a promising technique due to its performance retention and complexity reduction in a deceptive jammer against synthetic aperture radar(SAR).In this paper,the 1-bit quantization technology is ut...One-bit quantization is a promising technique due to its performance retention and complexity reduction in a deceptive jammer against synthetic aperture radar(SAR).In this paper,the 1-bit quantization technology is utilized to agilely generate split false targets in the SAR imagery once the radar signal is intercepted,which reduces the complexity of the jammer significantly with guaranteed focusing quality.A single-frequency threshold is used to decompose harmonics incurred by the 1-bit quantization,and its parameters are adjusted through different pulse repetition intervals to provide steerable modulations.In this way,the SAR signal is split into coupled false scatterers during the 1-bit interception.By further deploying amplitude,time-delay,and Doppler frequency modulations on the 1-bit intercepted signal,the split false targets are created.The proposed approach is compared with different deceptive jamming methods to show its validity in effectiveness and cost,and numerical experiments are also presented for verification.展开更多
The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two ...The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two kinds of propellant with different crosslinking density to study the dynamic mechanical responses and damage-ignition mechanism.SHPB apparatus is equipped with a highperformance infrared camera and high-speed camera to capture the deformation,damage-ignition feature and temperature evolution images in the impact process.The results suggested that the mechanical responses and damage-ignition mechanism of the propellants were affected by the strain rates and crosslinking density.The damage-ignition degree is more intense and the reaction occurs earlier with the increase of strain rates.For propellant 1 with higher crosslinking density,the critical ignition strain rate is 4500 s^(-1).Two kinds of propellants show different ignition mechanism,i.e.crack generation,propagation and final fracture for propellant 1 while viscous shear flow for propellant 2.Meanwhile,the SEM images also reveal the difference of damage-ignition mechanism of the two kinds of propellants.Finally,the ignition mechanism under different strain rates and critical ignition strain rate of propellants are further explained by the theoretical calculation of temperature variations.展开更多
The design strategy and efficiency optimization of a Ge-based n-type metal-oxide-semiconductor field-effect transistor(n-MOSFET)with a Si_(0.14)Ge_(0.72)Sn_(0.14)-Ge_(0.82)Sn_(0.18)-Ge quantum structure used for 2.45 ...The design strategy and efficiency optimization of a Ge-based n-type metal-oxide-semiconductor field-effect transistor(n-MOSFET)with a Si_(0.14)Ge_(0.72)Sn_(0.14)-Ge_(0.82)Sn_(0.18)-Ge quantum structure used for 2.45 GHz weak energy microwave wireless energy transmission is reported.The quantum structure combined withδ-doping technology is used to reduce the scattering of the device and improve its electron mobility;at the same time,the generation of surface channels is suppressed by the Si_(0.14)Ge_(0.72)Sn_(0.14) cap layer.By adjusting the threshold voltage of the device to 91 mV,setting the device aspect ratio to 1μm/0.4μm and adopting a novel diode connection method,the rectification efficiency of the device is improved.With simulation by Silvaco TCAD software,good performance is displayed in the transfer and output characteristics.For a simple half-wave rectifier circuit with a load of 1 pf and 20 kΩ,the rectification efficiency of the device can reach 7.14%at an input power of-10 dBm,which is 4.2 times that of a Si MOSFET(with a threshold voltage of 80 mV)under the same conditions;this device shows a better rectification effect than a Si MOSFET in the range of-30 dBm to 6.9 dBm.展开更多
基金the support from the Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China(U1837601)National Natural Science Foundation of China(52273255)+3 种基金NASF Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics(U2130118)China Postdoctoral Science Foundation(2023M732029)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023092)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(XN2022226)。
文摘Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.
基金National Natural Science Foundation of China(U22B20131)for supporting this project.
文摘Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.
基金financial support of the National Natural Science Foundation of China(NO.11902255,U1837601 and 52090051).
文摘High-performance thermoplastic composites have been developed as significant structural materials for cutting-edge equipment in the aerospace and defence fields.However,the internal mechanism of processing parameters on mechanical properties in the manufacturing process of thermoplastic composite structures is still a serious challenge.The purpose of this study is to investigate the process/crystallization/property relationships for continuous carbon fiber(CF)reinforced polyether-ether-ketone(PEEK)composites.The composite laminates are fabricated according to orthogonal experiments via the thermoforming method.The mechanical performance is investigated in terms of crystallization properties and fracture morphology characterizations.Experimental results show that the mechanical performance and crystallization properties of thermoplastic composites are significantly affected by the coupling of processing parameters.The increased molding temperature,pressure,and holding time improve the degree of fiber/matrix infiltration and affect the crystallinity and crystalline morphology of the matrix,which further influences the mechanical properties of the composites.This is reflected in the test results that crystallinity has an approximately linear effect on mode-I interlaminar fracture toughness and transverse flexural modulus.As well as the higher molding temperature can destroy the pre-existent crystals to improve the toughness of the matrix,and the well-defined crystalline structures can be observed when fabricated at higher temperatures and longer periods of holding time.
文摘We report a cesium vapor laser with fundamental mode output and a wavelength of 894 nm. The laser is pumped by a laser diode array with an external cavity of a holographic grating by using Littrow's structure. A slope efbciency of 22.4% is obtained by using a pumping source with a linewidth of 0.26 nm and 80 kPa methane as the buffer gas. The threshold pumping power is 1.56 W.
文摘This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature as well as reduce the influence of resistance-temperature dependency.Considering the degraded circuit performance caused by the process deviation,the trimmable module of the temperature coefficient(TC)is introduced to improve the circuit stability.The circuit has the advantages of simple structure,high linear stability,high TC accuracy,and trimmable TC.It consumes an area of 0.09 mm^(2)when fabricated by using the 0.25-μm complementary metal-oxide-semiconductor(CMOS)process.The proposed circuit achieves the simulated power supply rejection(PSR)of about-78.7 dB@1 kHz,the measured TC of~4.7 ppm/℃over a wide temperature range from-55℃to 125℃with the 2.5-V single-supply voltage,and the tested line regulation of 0.10 mV/V.Such a high-performance bandgap reference circuit can be widely applied in high-precision and high-reliability electronic systems.
基金supported in part by the National Natural Science Foundation of China under Grants 61801297,62171293,U1713217,U2033213,61971218,61801302,61701528,61601304in part by the National Science Fund for Distinguished Young Scholars under Grant 61925108+5 种基金in part by Natural Science Funding of Guangdong Province under Grant 2017A030313336in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515110509in part by Foundation of Shenzhen City under Grant JCYJ20170302142545828in part by the Shenzhen University Grant 2019119,2016057in part by the Fund of State Key Laboratory of Millimeter Waves under Grant K202235in part by Sichuan Science and Technology Program under Grant 2021YFS0319.
文摘The excellent remote sensing ability of synthetic aperture radar(SAR)will be misled seriously when it encounters deceptive jamming which possesses high fidelity and fraudulence.In this paper,the dynamic synthetic aperture(DSA)scheme is used to extract the difference between the true and false targets.A simultaneous deceptive jamming suppression and target reconstruction method is proposed for a single channel SAR system to guarantee remote sensing ability.The system model is formulated as a sparse signal recovery problem with an unknown parametric dictionary to be estimated.An iterative reweighted method is employed to jointly handle the dictionary parameter learning and target reconstruction problem in an majorization-minimization framework,where a surrogate function majorizing the Gaussian entropy in the objective function is introduced to circumvent its non-convexity.After dictionary parameter learning,the grid mismatching problem in a fixed grid based method is avoided.Therefore,the proposed method can reap a super resolution result.Besides,a simple yet effective DSA section scheme is developed for the SAR data excerpting,in which only two DSAs are required.Experimental results about location error and reconstruction power error reveal that the proposed method is able to achieve a good performance in deceptive jamming suppression.
基金Supported by the Strategic Priority Research Program on Space Science(XDA04060801,XDA04060802,XDA04060803,XDA04060804)of Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratory of China+1 种基金the Chinese National Science Foundation(41374175,41204129)the CAS/SAFEA international Partnership Program for Creative Research Teams
文摘The Solar Polar ORbit Telescope(SPORT) project for space weather mission has been under intensive scientific and engineering background studies since it was incorporated into the Chinese Space Science Strategic Pioneer Project in 2011.SPORT is designed to carry a suite of remote-sensing and in-situ instruments to observe Coronal Mass Ejections(CMEs),energetic particles,solar high-latitude magnetism,and the fast solar wind from a polar orbit around the Sun.The first extended view of the polar regions of the Sun and the ecliptic enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere,and the solar high-latitude magnetism giving rise to eruptions and the fast solar wind.Coordinated observations between SPORT and other spaceborne/ground-based facilities within the International Living With a Star(ILWS) framework can significantly enhance scientific output.SPORT is now competing for official selection and implementation during China's 13 th Five-Year Plan period of 2016-2020.
基金National Natural Science Foundation of China(Grant No.61801297,62171293,U1713217,61971218,61601304,61801302,61701528)Natural Science Funding of Guangdong Province(Grant No.2017A030313336)+1 种基金Foundation of Shenzhen City(Grant No.JCYJ20170302142545828)Shenzhen University(Grant No.2019119,2016057)to provide fund for conducting experiments。
文摘One-bit quantization is a promising technique due to its performance retention and complexity reduction in a deceptive jammer against synthetic aperture radar(SAR).In this paper,the 1-bit quantization technology is utilized to agilely generate split false targets in the SAR imagery once the radar signal is intercepted,which reduces the complexity of the jammer significantly with guaranteed focusing quality.A single-frequency threshold is used to decompose harmonics incurred by the 1-bit quantization,and its parameters are adjusted through different pulse repetition intervals to provide steerable modulations.In this way,the SAR signal is split into coupled false scatterers during the 1-bit interception.By further deploying amplitude,time-delay,and Doppler frequency modulations on the 1-bit intercepted signal,the split false targets are created.The proposed approach is compared with different deceptive jamming methods to show its validity in effectiveness and cost,and numerical experiments are also presented for verification.
基金China National Nature Science Foundation(Grant No.11872119)Foundation Strengthening Project(Grant No.2020-JCJQ-ZD-220)for supporting this project。
文摘The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two kinds of propellant with different crosslinking density to study the dynamic mechanical responses and damage-ignition mechanism.SHPB apparatus is equipped with a highperformance infrared camera and high-speed camera to capture the deformation,damage-ignition feature and temperature evolution images in the impact process.The results suggested that the mechanical responses and damage-ignition mechanism of the propellants were affected by the strain rates and crosslinking density.The damage-ignition degree is more intense and the reaction occurs earlier with the increase of strain rates.For propellant 1 with higher crosslinking density,the critical ignition strain rate is 4500 s^(-1).Two kinds of propellants show different ignition mechanism,i.e.crack generation,propagation and final fracture for propellant 1 while viscous shear flow for propellant 2.Meanwhile,the SEM images also reveal the difference of damage-ignition mechanism of the two kinds of propellants.Finally,the ignition mechanism under different strain rates and critical ignition strain rate of propellants are further explained by the theoretical calculation of temperature variations.
基金supported by the National 111 Center(Grant No.B12026)Research on***Technology of Intelligent Reconfigurable General System(Grant No.F020250058)。
文摘The design strategy and efficiency optimization of a Ge-based n-type metal-oxide-semiconductor field-effect transistor(n-MOSFET)with a Si_(0.14)Ge_(0.72)Sn_(0.14)-Ge_(0.82)Sn_(0.18)-Ge quantum structure used for 2.45 GHz weak energy microwave wireless energy transmission is reported.The quantum structure combined withδ-doping technology is used to reduce the scattering of the device and improve its electron mobility;at the same time,the generation of surface channels is suppressed by the Si_(0.14)Ge_(0.72)Sn_(0.14) cap layer.By adjusting the threshold voltage of the device to 91 mV,setting the device aspect ratio to 1μm/0.4μm and adopting a novel diode connection method,the rectification efficiency of the device is improved.With simulation by Silvaco TCAD software,good performance is displayed in the transfer and output characteristics.For a simple half-wave rectifier circuit with a load of 1 pf and 20 kΩ,the rectification efficiency of the device can reach 7.14%at an input power of-10 dBm,which is 4.2 times that of a Si MOSFET(with a threshold voltage of 80 mV)under the same conditions;this device shows a better rectification effect than a Si MOSFET in the range of-30 dBm to 6.9 dBm.