期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Review of bumper materials for spacecraft shield against orbital debris hypervelocity impact
1
作者 Siyuan Ren Pinliang Zhang +6 位作者 Qiang Wu Qingming Zhang Zizheng Gong Guangming Song Renrong Long Liangfei Gong Mingze Wu 《Defence Technology(防务技术)》 2025年第3期137-177,共41页
It is widely known that the hypervelocity impact of orbital debris can cause serious damage to spacecraft,and enhancing the impact resistance is the great concern of spacecraft shield design.This paper provides a comp... It is widely known that the hypervelocity impact of orbital debris can cause serious damage to spacecraft,and enhancing the impact resistance is the great concern of spacecraft shield design.This paper provides a comprehensive overview of advances in the development of bumper materials for spacecraft shield applications.In particular,the protective mechanism and process of the bumper using different materials against hypervelocity impact are reviewed and discussed.The advantages and disadvantages of each material used in shield were discussed,and the performance under hypervelocity impact was given according to the specific configuration.This review provides the useful reference and basis for researchers and engineers to create bumper materials for spacecraft shield applications,and the contemporary challenges and future directions for bumper materials for spacecraft shield were presented. 展开更多
关键词 Orbital debris Spacecraft shield Hypervelocity impact Bumper materials Protective mechanism
在线阅读 下载PDF
Dynamic access task scheduling of LEO constellation based on space-based distributed computing
2
作者 LIU Wei JIN Yifeng +2 位作者 ZHANG Lei GAO Zihe TAO Ying 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期842-854,共13页
A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u... A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA. 展开更多
关键词 beam resource allocation distributed computing low Earth obbit(LEO)constellation spacecraft access task scheduling
在线阅读 下载PDF
A review on recent development of space solar power
3
作者 HOU Xinbin MANKINS John +2 位作者 SHINOHARA Naoki CHOI Joon-Min SOLTAU Martin 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第6期33-51,共19页
Space solar power(SSP)system,a major type of space-based power-generating equipment,is an important infrastructure providing massive,continuous,and stable green electricity by utilizing solar energy in space.Many coun... Space solar power(SSP)system,a major type of space-based power-generating equipment,is an important infrastructure providing massive,continuous,and stable green electricity by utilizing solar energy in space.Many countries and organizations consider SSP to be one of the most promising clean energy sources.The historical activities of SSP in the world are summarized.This review focuses on the significant development of SSP during the last 10 years,which is the most important period for SSP.The latest international SSP development programmes in the United States,ESA,Japan,China,UK and Korea are presented.Some significant solar power satellite(SPS)concepts proposed in the decade,including typical SPS-ALPHA,MR-SPS,CASSIOPeiA SPS,et al.,are introduced.The technical and non-technical challenges are also listed and several important in-space demonstration missions in recent years and in the near future are introduced.The conclusion is that the next 5 to 10 years will be an important period for rapidly developing the key technologies and conducting on-orbit demonstration and application.Controlling the mutual position relationship between the solar array and the transmitting antenna becomes a core issue to be considered in the innovative design of the SPS.Wireless power transmission technologies would be the demonstration focus for the first step.It is expected that the first commercial SPS would be constructed as early as 2040. 展开更多
关键词 space solar power solar power satellite REVIEW STRATEGY DEMONSTRATION
在线阅读 下载PDF
Weakened in-plane anisotropy of AZ31 magnesium alloy sheet induced by pre-enhanced non-basal slips during hot rolling
4
作者 YANG Chao-yang WANG Li-fei +7 位作者 XUE Liang-liang HUANG Qiu-yan XIA Da-biao FU Xin-wei SONG Bo ZHENG Liu-wei WANG Hong-xia KWANG Seon-Shin 《Journal of Central South University》 2025年第3期706-726,共21页
To weaken the basal texture and in-plane anisotropy of magnesium alloy, non-basal slips are pre-enhanced by pre-rolling with a single pass larger strain reduction at elevated temperatures. Then Mg alloy sheets with th... To weaken the basal texture and in-plane anisotropy of magnesium alloy, non-basal slips are pre-enhanced by pre-rolling with a single pass larger strain reduction at elevated temperatures. Then Mg alloy sheets with the thickness of 1 mm are achieved after five passes rolling at 300 ℃. A double peak and disperse basal texture is generated after pre- rolling at higher temperatures when the non-basal slips are more active. So, the texture intensity of pre-rolled samples is reduced. Moreover, the distribution condition of in-grain misorientation axes (a method to analyze the activation of slips) shows that the pyramidal slip is quite active during deformation. After annealing on final rolled sheets, the texture distributions are changed and the intensity of texture reduces obviously due to static recrystallization. In particular, the r-value and in-plane anisotropy of pre-rolled samples are obviously lower than those of sample without pre-rolling. 展开更多
关键词 magnesium alloys MICROSTRUCTURE ANISOTROPY texture evolution
在线阅读 下载PDF
Adaptive augmentation of gain-scheduled controller for aerospace vehicles 被引量:8
5
作者 Xiyuan Huang Qing Wang +2 位作者 Yali Wang Yanze Hou Chaoyang Dong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期272-280,共9页
This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed appr... This paper proposes an adaptive augmentation control design approach of the gain-scheduled controller.This extension is motivated by the need for augmentation of the baseline gainscheduled controller.The proposed approach can be utilized to design flight control systems for advanced aerospace vehicles with a large parameter variation.The flight dynamics within the flight envelope is described by a switched nonlinear system,which is essentially a switched polytopic system with uncertainties.The flight control system consists of a baseline gain-scheduled controller and a model reference adaptive augmentation controller,while the latter can recover the nominal performance of the gainscheduled controlled system under large uncertainties.By the multiple Lyapunov functions method,it is proved that the switched nonlinear system is uniformly ultimately bounded.To validate the effectiveness of the proposed approach,this approach is applied to a generic hypersonic vehicle,and the simulation results show that the system output tracks the command signal well even when large uncertainties exist. 展开更多
关键词 adaptive control gain-scheduled control flight envelope aerospace vehicle
在线阅读 下载PDF
Impedance control of multi-arm space robot for the capture of non-cooperative targets 被引量:6
6
作者 GE Dongming SUN Guanghui +1 位作者 ZOU Yuanjie SHI Jixin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期1051-1061,共11页
Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This ... Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method. 展开更多
关键词 multi-arm space robot impedance control non-cooperative target CAPTURE
在线阅读 下载PDF
A global-local finite element analysis of hybrid composite-to-metal bolted connections used in aerospace engineering 被引量:2
7
作者 LIANG Ke 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1225-1232,共8页
Efficient bolted joint design is an essential part of designing the minimum weight aerospace structures, since structural failures usually occur at connections and interface. A comprehensive numerical study of three-d... Efficient bolted joint design is an essential part of designing the minimum weight aerospace structures, since structural failures usually occur at connections and interface. A comprehensive numerical study of three-dimensional(3D) stress variations is prohibitively expensive for a large-scale structure where hundreds of bolts can be present. In this work, the hybrid composite-to-metal bolted connections used in the upper stage of European Ariane 5ME rocket are analyzed using the global-local finite element(FE) approach which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of interest. We calculate the Tsai-Wu failure index and the margin of safety using the stresses obtained from ABAQUS. We find that the composite part of a hybrid bolted connection is prone to failure compared to the metal part. We determine the bolt preload based on the clamp-up load calculated using a maximum preload to make the composite part safe. We conclude that the unsuitable bolt preload may cause the failure of the composite part due to the high stress concentration in the vicinity of the bolt. The global-local analysis provides an efficient computational tool for enhancing 3D stress analysis in the highly loaded region. 展开更多
关键词 BOLTED CONNECTION global-local finite element approach failure BOLT PRELOAD
在线阅读 下载PDF
Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis 被引量:2
8
作者 ZHOU Kai LI Daojing +7 位作者 CUI Anjing HAN Dong TIAN He YU Haifeng DU Jianbo LIU Lei ZHU Yu ZHANG Running 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1143-1151,共9页
The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third... The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period. 展开更多
关键词 principal component analysis(PCA) spaceborne synthetic aperture radar(SAR) sparse flight sparse spectrum by interferometry 3-D imaging
在线阅读 下载PDF
Effects of projectile parameters on the momentum transfer and projectile melting during hypervelocity impact 被引量:1
9
作者 Wenjin Liu Qingming Zhang +6 位作者 Renrong Long Zizheng Gong Ren Jiankang Xin Hu Siyuan Ren Qiang Wu Guangming Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期89-103,共15页
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul... The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection. 展开更多
关键词 Hypervelocity impact Energy partitioning Impact melting Momentum transfer
在线阅读 下载PDF
Recent Progress of Microgravity Science Research in China
10
作者 ZHAO Jianfu DU Wangfang +12 位作者 KANG Qi LAN Ding LI Kai LI Weibin LIU Y C LUO Xinghong MIAO Jianyin WANG Qinggong WANG Shuangfeng ZHANG Tao ZHANG Xingwang ZHANG Yonghai ZHENG Huiqiong 《空间科学学报》 CAS CSCD 北大核心 2022年第4期772-785,共14页
Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in... Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in different gravity environments.Application researches relevant to these basic studies are also important contents of microgravity science.The advanced subjects,to some extent,reflect the ability of human beings to understand nature and the R&D level in this field in various countries.In this paper,the recent progress and the latest achievements of microgravity science and application researches in China aboard space platforms such as the Core Capsule Tianhe of the China Space Station(CSS)and satellites,as well as utilizing ground-based short-term microgravity facilities such as the Drop Tower Beijing and TUFF,are summarized,which cover the following sub-disciplines:microgravity fluid physics,microgravity combustion science,space materials science,space fundamental physics,space bio-technology,and relevant space technology applications. 展开更多
关键词 Microgravity science China Space Station(CSS) Ground-based short-term microgravity platforms Microgravity fluid physics Microgravity combustion science Space materials science Space fundamental physics Space bio-technology
在线阅读 下载PDF
Efficient cache replacement framework based on access hotness for spacecraft processors
11
作者 GAO Xin NIAN Jiawei +1 位作者 LIU Hongjin YANG Mengfei 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第2期74-88,共15页
A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity... A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy. 展开更多
关键词 spacecraft processors cache management replacement policy storage efficiency memory hierarchy MICROARCHITECTURE
在线阅读 下载PDF
Survivability model of LEO satellite constellation based on GERT with limited backup resources
12
作者 NIE Yuanyuan FANG Zhigeng +1 位作者 LIU Sifeng GAO Su 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期976-986,共11页
Survivability is used to evaluate the ability of the satellite to complete the mission after failure,while the duration of maintaining performance is often ignored.An effective backup strategy can restore the constell... Survivability is used to evaluate the ability of the satellite to complete the mission after failure,while the duration of maintaining performance is often ignored.An effective backup strategy can restore the constellation performance timely,and maintain good network communication performance in case of satellite failure.From the perspective of network utility,the low Earth orbit(LEO)satellite constellation survivable graphical eva-luation and review technology(GERT)network with backup satel-lites is constructed.A network utility transfer function algorithm based on moment generating function and Mason formula is proposed,the network survivability evaluation models of on-orbit backup strategy and ground backup strategy are established.The survivable GERT model can deduce the expected mainte-nance time of LEO satellite constellation under different fault states and the network utility generated during the state mainte-nance period.The case analysis shows that the proposed surviv-able GERT model can consider the satellite failure rate,backup satellite replacement rate,maneuver control replacement ability and life requirement,and effectively determine the optimal sur-vivable backup strategy for LEO satellite constellation with limi-ted resources according to the expected network utility. 展开更多
关键词 SURVIVABILITY low Earth orbit(LEO)satellite constella-tion graphical evaluation and review technology(GERT) backup strategy
在线阅读 下载PDF
Improving the spaceborne GNSS-R altimetric precision based on the novel multilayer feedforward neural network weighted joint prediction model
13
作者 Yiwen Zhang Wei Zheng Zongqiang Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期271-284,共14页
Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at... Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry. 展开更多
关键词 GNSS-R satellite constellations Sea surface altimetric precision Underwater navigation Multilayer feedforward neural network
在线阅读 下载PDF
High performance receiving and processing technology in satellite beam hopping communication
14
作者 ZHAI Shenghua HUI Tengfei +3 位作者 GONG Xianfeng ZHANG Zehui GAO Xiaozheng YANG Kai 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期815-828,共14页
Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous... Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal,satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-per-formance reception.Firstly,this paper analyzes the key issues of burst communication for traffic signals in beam hopping sys-tems,and then compares and studies typical carrier synchro-nization algorithms for burst signals.Secondly,combining the requirements of beam-hopping communication systems for effi-cient burst and low signal-to-noise ratio reception of downlink signals in forward links,a decoding assisted bidirectional vari-able parameter iterative carrier synchronization technique is pro-posed,which introduces the idea of iterative processing into car-rier synchronization.Aiming at the technical characteristics of communication signal carrier synchronization,a new technical approach of bidirectional variable parameter iteration is adopted,breaking through the traditional understanding that loop struc-tures cannot adapt to low signal-to-noise ratio burst demodula-tion.Finally,combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems,the research and performance simulation are con-ducted.The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals,achieve fast synchronization of low signal-to-noise ratio burst signals,and have the unique advantage of flexible and adjustable parameters. 展开更多
关键词 beam-hopping high throughput satellite high per-formance reception processing
在线阅读 下载PDF
Delay bounded routing with the maximum belief degree for dynamic uncertain networks
15
作者 MA Ji KANG Rui +3 位作者 LI Ruiying ZHANG Qingyuan LIU Liang WANG Xuewang 《Journal of Systems Engineering and Electronics》 2025年第1期127-138,共12页
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo... Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds. 展开更多
关键词 dynamic uncertain network uncertainty theory epistemic uncertainty delay bounded routing maximum belief degree
在线阅读 下载PDF
Research on robust mean square stability of networked control systems with packet dropout 被引量:5
16
作者 Dexiao Xie Xiaodong Han +1 位作者 He Huang Zhiquan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期95-101,共7页
This paper is concerned with the robust stabilization problem of networked control systems with stochastic packet dropouts and uncertain parameters. Considering the stochastic packet dropout occuring in two channels b... This paper is concerned with the robust stabilization problem of networked control systems with stochastic packet dropouts and uncertain parameters. Considering the stochastic packet dropout occuring in two channels between the sensor and the controller, and between the controller and the actuator, networked control systems are modeled as the Markovian jump linear system with four operation modes. Based on this model, the necessary and sufficient conditions for the mean square stability of the deterministic networked control systems and uncertain networked control systems are given by using the theory of the Markovian jump linear system, and corresponding controller design procedures are proposed via the cone complementarity linearization method. Finally, the numerical example and simulations are given to illustrate the effectiveness of the proposed results. 展开更多
关键词 networked control system packet dropout meansquare stability Markovian jump linear system.
在线阅读 下载PDF
Analysis of unmanned aerial vehicle navigation and height control system based on GPS 被引量:3
17
作者 Jianjun Zhang Hong Yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期643-649,共7页
According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance loc... According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design. 展开更多
关键词 height measuring global positioning system(GPS) reflected signal delay mapping receiver unmanned aerial vehicle(UAV).
在线阅读 下载PDF
Success probability orientated optimization model for resource allocation of the technological innovation multi-project system 被引量:1
18
作者 Weixu Dai Weiwei Wu +1 位作者 Bo Yu Yunhao Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第6期1227-1237,共11页
A success probability orientated optimization model for resource allocation of the technological innovation multi-project system is studied. Based on the definition of the technological innovation multi-project system... A success probability orientated optimization model for resource allocation of the technological innovation multi-project system is studied. Based on the definition of the technological innovation multi-project system, the leveling optimization of cost and success probability is set as the objective of resource allocation. The cost function and the probability function of the optimization model are constructed. Then the objective function of the model is constructed and the solving process is explained. The model is applied to the resource allocation of an enterprise's technological innovation multi-project system. The results show that the proposed model is more effective in rational resource allocation, and is more applicable in maximizing the utility of the technological innovation multi-project system. © 2016 Beijing Institute of Aerospace Information. 展开更多
关键词 Cost functions OPTIMIZATION PROBABILITY
在线阅读 下载PDF
In-situ measurement of elastic modulus for ceramic top-coat at high temperature
19
作者 齐红宇 周立柱 +2 位作者 马海全 杨晓光 李旭 《Journal of Central South University》 SCIE EI CAS 2008年第S2期372-376,共5页
The ceramic thermal barrier coatings (TBCs) play an increasingly important in advanced gas turbine engines because of their ability to further increase the engine operating temperature and reduce the cooling, thus hel... The ceramic thermal barrier coatings (TBCs) play an increasingly important in advanced gas turbine engines because of their ability to further increase the engine operating temperature and reduce the cooling, thus help achieve future engine low emission, high efficiency and improve the reliability goals. Currently, there are two different processes such as the plasma spraying (PS) and the electron beam-physical vapor deposition (EB-PVD) techniques. The PS coating was selected to test the elastic modulus. Using the nanoindentation and resonant frequency method, the mechanical properties of ceramic top-coat were measured in-situ. According to the theory of the resonant frequency and composite beam, the testing system was set up including the hardware and software. The results show that the accurate characterization of the elastic properties of TBCs is important for stress-strain analysis and failure prediction. The TBCs systems are multi-layer material system. It is difficult to measure the elastic modulus of top-coat by tensile method. The testing data is scatter by nanoindentation method because of the microstructure of the ceramic top-coat. The elastic modulus of the top-coat between 20?1 150 ℃ is obtained. The elastic modulus is from 2 to 70 GPa at room temperature. The elastic modulus changes from 62.5 GPa to 18.6 GPa when the temperature increases from 20 ℃ to 1 150 ℃. 展开更多
关键词 thermal BARRIER coatings plasma SPRAYING RESONANT frequency elastic MODULUS
在线阅读 下载PDF
Progress in Space Debris Research
20
作者 Zhao Changyin Zhang Wenxiang +1 位作者 Han Zengyao Wang Hongbo 《空间科学学报》 CAS CSCD 北大核心 2010年第5期516-518,共3页
During recent years,A de-orbit disposal of SinoSat 2 satellite and the depletion of the residual propellant after SC/LV separation for all LM-4 series launch vehicles were carried out.Stuffed Whipple Shields based on ... During recent years,A de-orbit disposal of SinoSat 2 satellite and the depletion of the residual propellant after SC/LV separation for all LM-4 series launch vehicles were carried out.Stuffed Whipple Shields based on hypervelocity impact particles were developed.Routine observation and collision avoidance were performed.The main progress in space debris research will be introduced from three aspects:mitigation,spacecraft protection,observation and collision avoidance. 展开更多
关键词 空间碎片 鑫诺2号卫星 超高速撞击 运载火箭 避免碰撞 供应链 推进剂 航天器
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部