期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Elevating dual-redox photocatalysis with p-n junction:Hydrangea-like Zn_(3)In_(2)S_(6)nanoflowers coupled hexagonal Co_(3)O_(4)for cooperative hydrogen and benzaldehyde production
1
作者 Xin-Quan Tan Grayson Zhi Sheng Ling +3 位作者 Tan Ji Siang Xianhai Zeng Abdul Rahman Mohamed Wee-Jun Ong 《Nano Materials Science》 2025年第2期169-179,共11页
Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co... Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co_(3)O_(4)/Zn_(3)In_(2)S_(6)(CoZ)hybrid with a complementary band edge potential.The photocatalyst formed by the 2D assembled-nanostructure portrayed an optimal yield of 13.8(H_(2))and 13.1(benzaldehyde)mmol g^(-1)h^(-1)when exposed to light(λ>420 nm),surpassing 1​%Pt-added ZIS(12.4(H_(2))and 10.71(benzaldehyde)mmol g^(-1)h^(-1)).Around 95​%of the electron-hole utilization rate was achieved.The solar-to-hydrogen(STH)and apparent quantum yield(AQY)values of 0.466​%and 4.96​%(420​nm)achieved by this system in the absence of sacrificial agents exceeded those of previous works.The exceptional performance was mostly ascribed to the synergistic development of adjoining p-n heterojunctions and the built-in electric field for effective charge separation.Moreover,scavenger studies elucidated the intricate mechanistic enigma of the dual-redox process,in which benzaldehyde was produced via O-H activation and subsequent C-H cleavage of benzyl alcohol over CoZ hybrids.Furthermore,the widespread use of the optimal 1-CoZ composites was confirmed in multiple photoredox systems.This work presents an innovative perspective on the construction of dual-functioning p-n heterojunctions for practical photoredox applications. 展开更多
关键词 Hexagonal Co_(3)O_(4) Zn_(3)In_(2)S_(6)nanoflowers Dual photoredox reaction Hydrogen evolution Benzyl alcohol oxidation p-n heterojunction
在线阅读 下载PDF
Enhancing MXene-based supercapacitors:Role of synthesis and 3D architectures
2
作者 Wen Siong Poh Wen Jie Yiang +2 位作者 Wee-Jun Ong Pau Loke Show Chuan Yi Foo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期1-26,共26页
MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i... MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted. 展开更多
关键词 MXene 3D architectures Synthesis design SUPERCAPACITOR Energy storage
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部