Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co...Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co_(3)O_(4)/Zn_(3)In_(2)S_(6)(CoZ)hybrid with a complementary band edge potential.The photocatalyst formed by the 2D assembled-nanostructure portrayed an optimal yield of 13.8(H_(2))and 13.1(benzaldehyde)mmol g^(-1)h^(-1)when exposed to light(λ>420 nm),surpassing 1%Pt-added ZIS(12.4(H_(2))and 10.71(benzaldehyde)mmol g^(-1)h^(-1)).Around 95%of the electron-hole utilization rate was achieved.The solar-to-hydrogen(STH)and apparent quantum yield(AQY)values of 0.466%and 4.96%(420nm)achieved by this system in the absence of sacrificial agents exceeded those of previous works.The exceptional performance was mostly ascribed to the synergistic development of adjoining p-n heterojunctions and the built-in electric field for effective charge separation.Moreover,scavenger studies elucidated the intricate mechanistic enigma of the dual-redox process,in which benzaldehyde was produced via O-H activation and subsequent C-H cleavage of benzyl alcohol over CoZ hybrids.Furthermore,the widespread use of the optimal 1-CoZ composites was confirmed in multiple photoredox systems.This work presents an innovative perspective on the construction of dual-functioning p-n heterojunctions for practical photoredox applications.展开更多
MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i...MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.展开更多
基金support provided by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme(FRGS)(No.FRGS/1/2024/TK08/XMU/02/1)supported by the PETRONAS-Academia Collaboration Dialogue(PACD 2023)grant,provided by PETRONAS Research Sdn.Bhd.(PRSB)+6 种基金the Ministry of Science,Technology and Innovation(MOSTI)Malaysia under the Strategic Research Fund(SRF)(S.22015)supported by the National Natural Science Foundation of China(No.22202168)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515111019)support from the State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University(No.2023X11)supported by the Embassy of the People's Republic of China in Malaysia(EENG/0045)funded by Xiamen University Malaysia Investigatorship Grant(No.IENG/0038)Xiamen University Malaysia Research Fund(ICOE/0001,XMUMRF/2021-C8/IENG/0041 and XMUMRF/2025-C15/IENG/0080).
文摘Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co_(3)O_(4)/Zn_(3)In_(2)S_(6)(CoZ)hybrid with a complementary band edge potential.The photocatalyst formed by the 2D assembled-nanostructure portrayed an optimal yield of 13.8(H_(2))and 13.1(benzaldehyde)mmol g^(-1)h^(-1)when exposed to light(λ>420 nm),surpassing 1%Pt-added ZIS(12.4(H_(2))and 10.71(benzaldehyde)mmol g^(-1)h^(-1)).Around 95%of the electron-hole utilization rate was achieved.The solar-to-hydrogen(STH)and apparent quantum yield(AQY)values of 0.466%and 4.96%(420nm)achieved by this system in the absence of sacrificial agents exceeded those of previous works.The exceptional performance was mostly ascribed to the synergistic development of adjoining p-n heterojunctions and the built-in electric field for effective charge separation.Moreover,scavenger studies elucidated the intricate mechanistic enigma of the dual-redox process,in which benzaldehyde was produced via O-H activation and subsequent C-H cleavage of benzyl alcohol over CoZ hybrids.Furthermore,the widespread use of the optimal 1-CoZ composites was confirmed in multiple photoredox systems.This work presents an innovative perspective on the construction of dual-functioning p-n heterojunctions for practical photoredox applications.
基金supported by the Fundamental Research Grant Scheme by Ministry of Higher Education Malaysia(FRGS/1/2021/STG04/XMU/02/1 and FRGS/1/2022/TK09/XMU/03/2)the Xiamen University Malaysia Research Fund(XMUMRF/2023-C11/IENG/0056)。
文摘MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.