期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Direct seawater splitting for hydrogen production:Recent advances in materials synthesis and technological innovation
1
作者 Yilin Zhao Zhipeng Yu +4 位作者 Aimin Ge Lujia Liu Joaquim Luis Faria Guiyin Xu Meifang Zhu 《Green Energy & Environment》 SCIE EI CAS 2025年第1期11-33,共23页
Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the ... Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production. 展开更多
关键词 Seawater splitting CATALYST Membranes Mixed seawater systems Self-powered systems
在线阅读 下载PDF
End-group modulation of phenazine based non-fullerene acceptors for efficient organic solar cells with high open-circuit voltage
2
作者 Yahui Zhang Yafeng Li +7 位作者 Ruixiang Peng Yi Qiu Jingyu Shi Zhenyu Chen Jinfeng Ge Cuifen Zhang Zheng Tang Ziyi Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期461-468,I0011,共9页
Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increa... Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increasing optical absorption,refining energy levels,and improving molecular packing in organic semiconductors.Herein,a series of NFAs(Pz IC-4H,Pz IC-4F,Pz IC-4Cl,Pz IC-2Br)with phenazine as the central core and with/without halogen-substituted(dicyanomethylidene)-indan-1-one(IC)as the electron-accepting end group were synthesized,and the effect of end group matched phenazine central unit on the photovoltaic performance was systematically studied.Synergetic photophysical and morphological analyses revealed that the PM6:Pz IC-4F blend involves efficient exciton dissociation,higher charge collection and transfer rates,better crystallinity,and optimal phase separation.Therefore,OSCs based on PM6:Pz IC-4F as the active layer exhibited a PCE of 16.48%with an open circuit voltage(Voc)and energy loss of 0.880 V and 0.53 e V,respectively.Accordingly,this work demonstrated a promising approach by designing phenazine-based NFAs for achieving high-performance OSCs. 展开更多
关键词 Organic solar cells Non-fullerene acceptor PHENAZINE Central core End group
在线阅读 下载PDF
Green,Sustainable Architectural Bamboo with High Light Transmission and Excellent Electromagnetic Shielding as a Candidate for Energy-Saving Buildings 被引量:7
3
作者 Jing Wang Xinyu Wu +5 位作者 Yajing Wang Weiying Zhao Yue Zhao Ming Zhou Yan Wu Guangbin Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期209-224,共16页
Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose compo... Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings. 展开更多
关键词 Electromagnetic interference shielding Biomass material TRANSMITTANCE ENERGY-SAVING BAMBOO
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部