Energy dependency has long been a weakness in Europe’s foreign strategy.As the most developed industrial center in the world,Europe’s energy demand has always been considerable.Constrained by its relatively weak ind...Energy dependency has long been a weakness in Europe’s foreign strategy.As the most developed industrial center in the world,Europe’s energy demand has always been considerable.Constrained by its relatively weak indigenous oil and gas resources,Europe has engaged in over a century of energy cooperation with major global energy suppliers such as the Middle East and the Soviet Union/Russia,fostering an asymmetric reliance that has witnessed numerous tumultuous episodes.With the United States achieving energy independence and seeking to expand its natural gas market,it has actively fueled geopolitical tensions.The Russia-Ukraine conflict accelerated the decoupling of Russian and European energy ties,pushing them further apart,as Europe turns anew to the United States and the Middle East for oil and gas.However,Europe must ponder several questions:Will detaching from Russia truly eliminate dependence?Does importing the United States liquefied natural gas(LNG)create a new form of reliance?Will the critical metals needed for the development of renewable energy become a new external dependency for Europe?And should Europe seek to break free from these dependencies?This article,through a comprehensive analysis of Europe’s energy issues,delves into these questions,enhancing our understanding of Europe’s current energy quandary.Given China’s status as a major energy importer with a transformation process sharing similarities with Europe’s,this study also offers insights for China’s energy transition.展开更多
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
Ice Silk Road contains abundant oil and gas sources.The total amount of oil and gas resources found alongside the Arctic region covered by Russia totalled 290 billion barrels of oil equivalent,which takes up 88.2%of t...Ice Silk Road contains abundant oil and gas sources.The total amount of oil and gas resources found alongside the Arctic region covered by Russia totalled 290 billion barrels of oil equivalent,which takes up 88.2%of the total volume discovered in the Arctic region.Eleven large oil and gas fields containing more than 5 billion barrels of oil equivalent have been discovered alongside the ice silk road,10 of which are in the West Siberian Basin;54 large oil and gas fields containing 0.5-5 billion barrels of oil equivalent have been discovered,43 of which are in Russia.展开更多
The upper Cretaceous Sarvak reservoir in the Azadegan oil field of southwest Iran has its oil–water contact nearly horizontal from the north to the center and dips steeply from the center to the south.The purpose of ...The upper Cretaceous Sarvak reservoir in the Azadegan oil field of southwest Iran has its oil–water contact nearly horizontal from the north to the center and dips steeply from the center to the south.The purpose of this paper is to interpret this abnormal reservoir feature by examining the accumulation elements,characteristics,and evolution based on the 3D seismic,coring,and well logging data.Generally,in the field,the Sarvak reservoir is massive and vertically heterogeneous,and impermeable interlayers are rare.The distribution of petrophysical properties is mainly dominated by the depositional paleogeomorphology and degrades from north to south laterally.The source is the lower Cretaceous Kazhdumi Formation of the eastern Dezful sag,and the seal is the muddy dense limestone of the Cenozoic Gurpi and Pebdeh Formations.Combined with the trap evolution,the accumulation evolution can be summarized as follows: the Sarvak play became a paleo-anticlinal trap in the Alpine tectonic activity after the late Cretaceous(96 Ma) and then was relatively peaceful in the later long geologic period.The Kazhdumi Formation entered in the oil window at the early Miocene(12–10 Ma) and charged the Sarvak bed,thus forming the paleo-reservoir.Impacted by the ZagrosOrogeny,the paleo-reservoir trap experienced a strong secondary deformation in the late Pliocene(4 Ma),which shows as the paleo-trap shrank dramatically and the prelow southern area uplifted and formed a new secondary anticline trap,hence evolving to the current two structural highs with the south point(secondary trap) higher than the north(paleo-trap).The trap deformation broke the paleoreservoir kinetic equilibrium and caused the secondary reservoir adjustment.The upper seal prevented vertical oil dissipation,and thus,the migration is mainly in interior Sarvak bed from northern paleo-reservoir to the southern secondary trap.The strong reservoir heterogeneity and the degradation trend of reservoir properties along migration path(north to south) made the reservoir readjustment extremely slow,plus the short and insufficient re-balance time,making the Sarvak form an ‘‘unsteady reservoir''which is still in the readjustment process and has not reached a new balance state.The current abnormal oil–water contact versus the trap evolutionary trend indicates the secondary readjustment is still in its early stage and has only impacted part of paleo-reservoir.Consequently,not all of the reservoir is dominated by the current structure,and some parts still stay at the paleo-reservoir form.From the overview above,we suggest the following for the future development: In the northern structural high,the field development should be focused on the original paleoreservoir zone.In the southern structural high,compared with the secondary reservoir of the Sarvak with the tilted oil–water contact and huge geologic uncertainty,the lower sandstone reservoirs are more reliable and could be developed first,and then the deployment optimized of the upper Sarvak after obtaining sufficient geological data.By the hints of the similar reservoir characteristics and tectonic inheritance with Sarvak,the lower Cretaceous Fahliyancarbonate reservoir is also proved to be an unsteady reservoir with a tilted oil–water contact.展开更多
文摘Energy dependency has long been a weakness in Europe’s foreign strategy.As the most developed industrial center in the world,Europe’s energy demand has always been considerable.Constrained by its relatively weak indigenous oil and gas resources,Europe has engaged in over a century of energy cooperation with major global energy suppliers such as the Middle East and the Soviet Union/Russia,fostering an asymmetric reliance that has witnessed numerous tumultuous episodes.With the United States achieving energy independence and seeking to expand its natural gas market,it has actively fueled geopolitical tensions.The Russia-Ukraine conflict accelerated the decoupling of Russian and European energy ties,pushing them further apart,as Europe turns anew to the United States and the Middle East for oil and gas.However,Europe must ponder several questions:Will detaching from Russia truly eliminate dependence?Does importing the United States liquefied natural gas(LNG)create a new form of reliance?Will the critical metals needed for the development of renewable energy become a new external dependency for Europe?And should Europe seek to break free from these dependencies?This article,through a comprehensive analysis of Europe’s energy issues,delves into these questions,enhancing our understanding of Europe’s current energy quandary.Given China’s status as a major energy importer with a transformation process sharing similarities with Europe’s,this study also offers insights for China’s energy transition.
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
文摘Ice Silk Road contains abundant oil and gas sources.The total amount of oil and gas resources found alongside the Arctic region covered by Russia totalled 290 billion barrels of oil equivalent,which takes up 88.2%of the total volume discovered in the Arctic region.Eleven large oil and gas fields containing more than 5 billion barrels of oil equivalent have been discovered alongside the ice silk road,10 of which are in the West Siberian Basin;54 large oil and gas fields containing 0.5-5 billion barrels of oil equivalent have been discovered,43 of which are in Russia.
文摘The upper Cretaceous Sarvak reservoir in the Azadegan oil field of southwest Iran has its oil–water contact nearly horizontal from the north to the center and dips steeply from the center to the south.The purpose of this paper is to interpret this abnormal reservoir feature by examining the accumulation elements,characteristics,and evolution based on the 3D seismic,coring,and well logging data.Generally,in the field,the Sarvak reservoir is massive and vertically heterogeneous,and impermeable interlayers are rare.The distribution of petrophysical properties is mainly dominated by the depositional paleogeomorphology and degrades from north to south laterally.The source is the lower Cretaceous Kazhdumi Formation of the eastern Dezful sag,and the seal is the muddy dense limestone of the Cenozoic Gurpi and Pebdeh Formations.Combined with the trap evolution,the accumulation evolution can be summarized as follows: the Sarvak play became a paleo-anticlinal trap in the Alpine tectonic activity after the late Cretaceous(96 Ma) and then was relatively peaceful in the later long geologic period.The Kazhdumi Formation entered in the oil window at the early Miocene(12–10 Ma) and charged the Sarvak bed,thus forming the paleo-reservoir.Impacted by the ZagrosOrogeny,the paleo-reservoir trap experienced a strong secondary deformation in the late Pliocene(4 Ma),which shows as the paleo-trap shrank dramatically and the prelow southern area uplifted and formed a new secondary anticline trap,hence evolving to the current two structural highs with the south point(secondary trap) higher than the north(paleo-trap).The trap deformation broke the paleoreservoir kinetic equilibrium and caused the secondary reservoir adjustment.The upper seal prevented vertical oil dissipation,and thus,the migration is mainly in interior Sarvak bed from northern paleo-reservoir to the southern secondary trap.The strong reservoir heterogeneity and the degradation trend of reservoir properties along migration path(north to south) made the reservoir readjustment extremely slow,plus the short and insufficient re-balance time,making the Sarvak form an ‘‘unsteady reservoir''which is still in the readjustment process and has not reached a new balance state.The current abnormal oil–water contact versus the trap evolutionary trend indicates the secondary readjustment is still in its early stage and has only impacted part of paleo-reservoir.Consequently,not all of the reservoir is dominated by the current structure,and some parts still stay at the paleo-reservoir form.From the overview above,we suggest the following for the future development: In the northern structural high,the field development should be focused on the original paleoreservoir zone.In the southern structural high,compared with the secondary reservoir of the Sarvak with the tilted oil–water contact and huge geologic uncertainty,the lower sandstone reservoirs are more reliable and could be developed first,and then the deployment optimized of the upper Sarvak after obtaining sufficient geological data.By the hints of the similar reservoir characteristics and tectonic inheritance with Sarvak,the lower Cretaceous Fahliyancarbonate reservoir is also proved to be an unsteady reservoir with a tilted oil–water contact.