期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Exploring the Road to 6G: ABC-Foundation for Intelligent Mobile Networks 被引量:10
1
作者 Jinkang Zhu Ming Zhao +1 位作者 Sihai Zhang Wuyang Zhou 《China Communications》 SCIE CSCD 2020年第6期51-67,共17页
The 5 th generation(5 G)mobile networks has been put into services across a number of markets,which aims at providing subscribers with high bit rates,low latency,high capacity,many new services and vertical applicatio... The 5 th generation(5 G)mobile networks has been put into services across a number of markets,which aims at providing subscribers with high bit rates,low latency,high capacity,many new services and vertical applications.Therefore the research and development on 6 G have been put on the agenda.Regarding demands and characteristics of future 6 G,artificial intelligence(A),big data(B)and cloud computing(C)will play indispensable roles in achieving the highest efficiency and the largest benefits.Interestingly,the initials of these three aspects remind us the significance of vitamin ABC to human body.In this article we specifically expound on the three elements of ABC and relationships in between.We analyze the basic characteristics of wireless big data(WBD)and the corresponding technical action in A and C,which are the high dimensional feature and spatial separation,the predictive ability,and the characteristics of knowledge.Based on the abilities of WBD,a new learning approach for wireless AI called knowledge+data-driven deep learning(KD-DL)method,and a layered computing architecture of mobile network integrating cloud/edge/terminal computing,is proposed,and their achievable efficiency is discussed.These progress will be conducive to the development of future 6 G. 展开更多
关键词 6G Artificial intelligence Wireless big data Cloud computing Knowledge+data driven deep learning layered computing layered network
在线阅读 下载PDF
Benefits Analysis of Beam Hopping in Satellite Mobile System with Unevenly Distributed Traffic 被引量:4
2
作者 Yitao Li Zhongqiang Luo +1 位作者 Wuyang Zhou Jinkang Zhu 《China Communications》 SCIE CSCD 2021年第9期11-23,共13页
Satellite mobile system and space-airground integrated network have a prominent superiority in global coverage which plays a critical role in remote and non-land regions, as well as emergency communications. However, ... Satellite mobile system and space-airground integrated network have a prominent superiority in global coverage which plays a critical role in remote and non-land regions, as well as emergency communications. However, due to the gradual angle attenuations of the satellite antennas, it is difficult to achieve full frequency multiplex among different beams as terrestrial 5G network. Multi-color frequency reuse is widely adopted in both academic and industry. Beam hopping scheme has attracted the attention of researchers recently due to the allocation flexibility. In this paper, we focus on analyzing the performance benefits of beam hopping compared with multi-color frequency reuse scheme in non-uniform user and traffic distributions in satellite system. Aerial networks are also introduced to form a space-airground integrated network for coverage enhancement,and the capacity improvement is analyzed. Besides,additional improved techniques are provided to make comprehensive analysis and comparisons. Theoretical analysis and simulation results indicate that the beam hopping scheme has a prominent superiority in the system capacity compared with the traditional multicolor frequency reuse scheme in both satellite mobile system and future space-air-ground integrated network. 展开更多
关键词 satellite communication space-air-ground integrated network beam hopping unevenly distributed traffic performance analysis
在线阅读 下载PDF
Sample-Efficient Deep Reinforcement Learning with Directed Associative Graph
3
作者 Dujia Yang Xiaowei Qin +2 位作者 Xiaodong Xu Chensheng Li Guo Wei 《China Communications》 SCIE CSCD 2021年第6期100-113,共14页
Reinforcement learning can be modeled as markov decision process mathematically.In consequence,the interaction samples as well as the connection relation between them are two main types of information for learning.How... Reinforcement learning can be modeled as markov decision process mathematically.In consequence,the interaction samples as well as the connection relation between them are two main types of information for learning.However,most of recent works on deep reinforcement learning treat samples independently either in their own episode or between episodes.In this paper,in order to utilize more sample information,we propose another learning system based on directed associative graph(DAG).The DAG is built on all trajectories in real time,which includes the whole connection relation of all samples among all episodes.Through planning with directed edges on DAG,we offer another perspective to estimate stateaction pair,especially for the unknowns to deep neural network(DNN)as well as episodic memory(EM).Mixed loss function is generated by the three learning systems(DNN,EM and DAG)to improve the efficiency of the parameter update in the proposed algorithm.We show that our algorithm is significantly better than the state-of-the-art algorithm in performance and sample efficiency on testing environments.Furthermore,the convergence of our algorithm is proved in the appendix and its long-term performance as well as the effects of DAG are verified. 展开更多
关键词 directed associative graph sample efficiency deep reinforcement learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部