In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particul...In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance.展开更多
In order to suppress the influence of temperature changes on the performance of accelerometers,a digital quartz resonant accelerometer with low temperature drift is developed using a quartz resonator cluster as a tran...In order to suppress the influence of temperature changes on the performance of accelerometers,a digital quartz resonant accelerometer with low temperature drift is developed using a quartz resonator cluster as a transducer element.In addition,a digital intellectual property(IP) is designed in FPGA to achieve signal processing and fusion of integrated resonators.A testing system for digital quartz resonant accelerometers is established to characterize the performance under different conditions.The scale factor of the accelerometer prototype reaches 3561.63 Hz/g in the range of -1 g to +1 g,and 3542.5 Hz/g in the range of-10 g to+10 g.In different measurement ranges,the linear correlation coefficient R~2 of the accelerometer achieves greater than 0.998.The temperature drift of the accelerometer prototype is tested using a constant temperature test chamber,with a temperature change from -20℃ to 80℃.After temperature-drift compensation,the zero bias temperature coefficient falls to 0.08 mg/℃,and the scale factor temperature coefficient is 65.43 ppm/℃.The experimental results show that the digital quartz resonant accelerometer exhibits excellent sensitivity and low temperature drift.展开更多
In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differ...In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differential rotating rear-body control-guided projectile to address the situation of satellite signal flickering and loss in projectile navigation systems due to environmental limitations.First,establish the system state and measurement equation when receiving satellite signals normally.Second,a seven-degree-of-freedom external ballistic model is constructed,and the ideal trajectory output from the ballistic model is used to provide the virtual motion state of the projectile,which is input into a filter as a substitute observation when satellite signals are lost.Finally,an adaptive Kalman filter(AKF)is designed,the proposed adaptive Kalman filter can accurately adjust the estimation error covariance matrix and Kalman gain in real-time based on information covariance mismatch.The simulation results show that compared to the classical Kalman filter,it can reduce the average positioning error by more than 38.21%in the case of short-term and full-range loss of satellite signals,providing a new idea for the integrated navigation of projectiles with incomplete information under the condition of satellite signal loss.展开更多
Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of mo...Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.展开更多
In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this pr...In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.展开更多
RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still...RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.展开更多
The challenge and control problems of static unstable missiles are presented. The steady-state benefits of static instability are illustrated, while the corresponding control challenge is described both by the charact...The challenge and control problems of static unstable missiles are presented. The steady-state benefits of static instability are illustrated, while the corresponding control challenge is described both by the characteristic lag of airframe and the increment of necessary control usage. Control limitation led by unstable zero-pole pair is analyzed for preliminary design and evaluation. Linear control strategy is examined wherein two and three loop acceleration autopilots with different control usages are developed using an optimal control approach combined with frequency domain constraint. The weights selection and relation with system performance are detailed. Then the nonlinear backstepping recursive method is detailed to determine how well it is able to follow command and its engineering feasibility. The results show that a static unstable missile is controllable, while the actuator bandwidth is the crucial limited factor. There should be a compromise between overall performance and actuator payment.展开更多
In the leakage current test, through the high speed data collection and digital filtering to the output voltage of the human body impedance network, leakage current test that is in accordance with many kinds of electr...In the leakage current test, through the high speed data collection and digital filtering to the output voltage of the human body impedance network, leakage current test that is in accordance with many kinds of electrical safety standards can be realized, and the frequency distribution information of the leakage current can be got as well, which can be used to much more completely evaluate the possible damage degree of the leakage current to the human body and analyze the reason for the appearance of the leakage current in the electric equipment.展开更多
Flue gas generator set is a kind of large high-speed rotating machinery in petrochemical industry.This research focuses on noise reduction algorithms basis ontheBirgé-Massartthreshold.Obtained the threshold throu...Flue gas generator set is a kind of large high-speed rotating machinery in petrochemical industry.This research focuses on noise reduction algorithms basis ontheBirgé-Massartthreshold.Obtained the threshold through Penalization Strategy Provided by Birgé-Massart;constructed different modulus maximum vertex neighborhood on different wavelet transform decomposition scales to influence the search process of modulus maximum point;obtained the appropriate modulus maximum points sequence on various wavelet decomposition scales;highlighted state feature information;finally usedMallat staggered projection to reconstruct signals.In order to validate the effectiveness of the algorithm,it was compared with four kinds of threshold noise suppression methods namely Rigrsure,Sqtwolog,Heursure,Minimaxi.The results show that this algorithm has a better signal to noise ratio and mean-square error.展开更多
The roll angular rate is much crucial for the guidance and control of the projectile.Yet the high-speed rotation of the projectile brings severe challenges to the direct measurement of the roll angular rate.Neverthele...The roll angular rate is much crucial for the guidance and control of the projectile.Yet the high-speed rotation of the projectile brings severe challenges to the direct measurement of the roll angular rate.Nevertheless,the radial magnetometer signal is modulated by the high-speed rotation,thus the roll angular rate can be achieved by extracting the instantaneous frequency of the radial magnetometer signal.The objective of this study is to find out a precise instantaneous frequency extraction method to obtain an accurate roll angular rate.To reach this goal,a modified spline-kernelled chirplet transform(MSCT)algorithm is proposed in this paper.Due to the nonlinear frequency modulation characteristics of the radial magnetometer signal,the existing time-frequency analysis methods in literature cannot obtain an excellent energy concentration in the time-frequency plane,thereby leading to a terrible instantaneous frequency extraction accuracy.However,the MSCT can overcome the problem of bad energy concentration by replacing the short-time Fourier transform operator with the Chirp Z-transform operator based on the original spline-kernelled chirplet transform.The introduction of Chirp Z-transform can improve the construction accuracy of the transform kernel.Since the construction accuracy of the transform kernel determines the concentration of time-frequency distribution,the MSCT can obtain a more precise instantaneous frequency.The performance of the MSCT was evaluated by a series of numerical simulations,high-speed turntable experiments,and real flight tests.The evaluation results show that the MSCT has an excellent ability to process the nonlinear frequency modulation signal,and can accurately extract the roll angular rate for the high spinning projectiles.展开更多
A fault identification method ofrotating machinery is proposed,which combines wavelet packet of time-frequency analysis and manifold learning.Firstly,the sampled vibration signal is decomposed to multilayer informatio...A fault identification method ofrotating machinery is proposed,which combines wavelet packet of time-frequency analysis and manifold learning.Firstly,the sampled vibration signal is decomposed to multilayer information with wavelet packet decomposition(WPD) method.Andevery level data of wavelet packet decomposition is processed bydemodulatingof Hilbert transform,eliminating the high frequency noiseof FIR filterand reducing the data length of the low frequency of resampling.Further,every level data vector is deal with normalization and calculated for the auto power spectrum.Finally,the manifold learning methods of t distributed stochastic neighbor embedding(t-SNE) is applied to do dimension reduction to generate 2D manifold figure data.Different fault forms of gearbox have different manifold features,which is used to identify failure status of equipment.With the experiment test,the feasibility and effectiveness of this identification method is verified.展开更多
The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear progr...The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear programming (LP) based branchand-bound method and adjusting the constraint conditions, an optimal set integer programming (OSIP) algorithm is then proposed for tracking multiple non-maneuvering targets in clutter. For the case of maneuvering targets, this paper introduces the OSIP algorithm into the filtering step of the interacting multiple model (IMM) algorithm resulting in the IMM based on OSIP algorithm. Extensive Monte Carlo simulations show that the presented algorithms can obtain superior estimations even in the case of high density noises.展开更多
The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation ...The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation is a reasonable way to improve motion precision. A motion compensation method based on neural network of radial basis function(RBF) was presented in this paper. It utilized the infinite approximation advantage of RBF neural network to fit the motion error curve. The best hidden neural quantity was optimized by training the motion error data and calculating the total sum of squares. The best curve coefficient matrix was got and used to calculate motion compensation values. The experiments showed that the motion errors could be reduced obviously by utilizing the method in this paper.展开更多
Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese ch...Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method.展开更多
In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are stu...In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are studied.It is assumed that the thickness of the plate changes along spanwise direction and chordwise direction,respectively,and it changes in both directions.The classical thin shell theory,the first and second fundamental forms of surface and von Karman geometric relationship are employed to derive the total potential energy and kinetic energy of the cantilever twisted plate,in which the centrifugal force potential due to high rotational speed is included.Then,according to the Rayleigh-Ritz procedure and applying the polynomial functions which satisfy the cantilever boundary conditions,the dynamic system expressed by equations of motion is reduced to an eigenvalue problem.By numerical simulation,the frequency curves and the mode shapes of the twisted plate can be obtained to reveal the internal connection between natural vibration and the parameters.A series of comparison studies are performed to verify the accuracy of the present formulation and calculations,in which compared data come from experimental,finite element method and theoretical calculation,respectively.The influence of pre-twist angle,three different forms of thickness taper ratio and rotational speed on natural vibration,mode exchange and frequency veering phenomenon of the system is discussed in detail.In addition,the approach proposed here can efficiently extract analytical expressions of mode functions for rotating variable thickness cantilever twisted plate structures.展开更多
Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing cle...Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.展开更多
基金Supported by the National Natural Science Foundation of China(62105039)。
文摘In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance.
文摘In order to suppress the influence of temperature changes on the performance of accelerometers,a digital quartz resonant accelerometer with low temperature drift is developed using a quartz resonator cluster as a transducer element.In addition,a digital intellectual property(IP) is designed in FPGA to achieve signal processing and fusion of integrated resonators.A testing system for digital quartz resonant accelerometers is established to characterize the performance under different conditions.The scale factor of the accelerometer prototype reaches 3561.63 Hz/g in the range of -1 g to +1 g,and 3542.5 Hz/g in the range of-10 g to+10 g.In different measurement ranges,the linear correlation coefficient R~2 of the accelerometer achieves greater than 0.998.The temperature drift of the accelerometer prototype is tested using a constant temperature test chamber,with a temperature change from -20℃ to 80℃.After temperature-drift compensation,the zero bias temperature coefficient falls to 0.08 mg/℃,and the scale factor temperature coefficient is 65.43 ppm/℃.The experimental results show that the digital quartz resonant accelerometer exhibits excellent sensitivity and low temperature drift.
基金funded by the National Natural Science Foundation of China (Grant No. 62471048)Open Fund Project of Beijing Key Laboratory of High Dynamic Navigation TechnologyKey Laboratory Fund Project of Modern Measurement and Control Technology, Ministry of Education
文摘In complex environments such as high dynamics and weak signals,a satellite signal compensation method based on prefabricated trajectory assistance and an improved adaptive Kalman filter is proposed for a 155 mm differential rotating rear-body control-guided projectile to address the situation of satellite signal flickering and loss in projectile navigation systems due to environmental limitations.First,establish the system state and measurement equation when receiving satellite signals normally.Second,a seven-degree-of-freedom external ballistic model is constructed,and the ideal trajectory output from the ballistic model is used to provide the virtual motion state of the projectile,which is input into a filter as a substitute observation when satellite signals are lost.Finally,an adaptive Kalman filter(AKF)is designed,the proposed adaptive Kalman filter can accurately adjust the estimation error covariance matrix and Kalman gain in real-time based on information covariance mismatch.The simulation results show that compared to the classical Kalman filter,it can reduce the average positioning error by more than 38.21%in the case of short-term and full-range loss of satellite signals,providing a new idea for the integrated navigation of projectiles with incomplete information under the condition of satellite signal loss.
基金Supported by National Natural Science Fund Project(51275052)Key project supported by Beijing Municipal Natural Science Foundation(3131002)Open topic of Key Laboratory of Key Laboratory of Modern Measurement & Control Technology,Ministry of Education(KF20141123202,KF20111123201)
文摘Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management.
基金supported by the Natural Science Foundation of Beijing Municipality(Grant No.4212003)the Crossdisciplinary Collaboration Project of Beijing Municipal Science and Technology New Star Program(Grant No.202111)。
文摘In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDC02040300)for this study.
文摘RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.
基金supported by the National Natural Science Foundation of China (60972118)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR200906131 PHR201006115)
文摘The challenge and control problems of static unstable missiles are presented. The steady-state benefits of static instability are illustrated, while the corresponding control challenge is described both by the characteristic lag of airframe and the increment of necessary control usage. Control limitation led by unstable zero-pole pair is analyzed for preliminary design and evaluation. Linear control strategy is examined wherein two and three loop acceleration autopilots with different control usages are developed using an optimal control approach combined with frequency domain constraint. The weights selection and relation with system performance are detailed. Then the nonlinear backstepping recursive method is detailed to determine how well it is able to follow command and its engineering feasibility. The results show that a static unstable missile is controllable, while the actuator bandwidth is the crucial limited factor. There should be a compromise between overall performance and actuator payment.
文摘In the leakage current test, through the high speed data collection and digital filtering to the output voltage of the human body impedance network, leakage current test that is in accordance with many kinds of electrical safety standards can be realized, and the frequency distribution information of the leakage current can be got as well, which can be used to much more completely evaluate the possible damage degree of the leakage current to the human body and analyze the reason for the appearance of the leakage current in the electric equipment.
基金partially supported by The National Natural Science Foundation of China(51275052)Natural Science Foundation of Beijing(3131002)+1 种基金The Key Project Supported by Introduction of Foreign Talents and Technologies of Beijing(B201101010)The major projects of the National Social Science Fund(12&ZD234)
文摘Flue gas generator set is a kind of large high-speed rotating machinery in petrochemical industry.This research focuses on noise reduction algorithms basis ontheBirgé-Massartthreshold.Obtained the threshold through Penalization Strategy Provided by Birgé-Massart;constructed different modulus maximum vertex neighborhood on different wavelet transform decomposition scales to influence the search process of modulus maximum point;obtained the appropriate modulus maximum points sequence on various wavelet decomposition scales;highlighted state feature information;finally usedMallat staggered projection to reconstruct signals.In order to validate the effectiveness of the algorithm,it was compared with four kinds of threshold noise suppression methods namely Rigrsure,Sqtwolog,Heursure,Minimaxi.The results show that this algorithm has a better signal to noise ratio and mean-square error.
基金National Natural Science Foundation(NNSF)of China under Grant 61771059National Natural Science Foundation(NNSF)of China under Grant 61471046Beijing Natural Science Foundation under Grant 4172022 to provide fund for conducting experiments。
文摘The roll angular rate is much crucial for the guidance and control of the projectile.Yet the high-speed rotation of the projectile brings severe challenges to the direct measurement of the roll angular rate.Nevertheless,the radial magnetometer signal is modulated by the high-speed rotation,thus the roll angular rate can be achieved by extracting the instantaneous frequency of the radial magnetometer signal.The objective of this study is to find out a precise instantaneous frequency extraction method to obtain an accurate roll angular rate.To reach this goal,a modified spline-kernelled chirplet transform(MSCT)algorithm is proposed in this paper.Due to the nonlinear frequency modulation characteristics of the radial magnetometer signal,the existing time-frequency analysis methods in literature cannot obtain an excellent energy concentration in the time-frequency plane,thereby leading to a terrible instantaneous frequency extraction accuracy.However,the MSCT can overcome the problem of bad energy concentration by replacing the short-time Fourier transform operator with the Chirp Z-transform operator based on the original spline-kernelled chirplet transform.The introduction of Chirp Z-transform can improve the construction accuracy of the transform kernel.Since the construction accuracy of the transform kernel determines the concentration of time-frequency distribution,the MSCT can obtain a more precise instantaneous frequency.The performance of the MSCT was evaluated by a series of numerical simulations,high-speed turntable experiments,and real flight tests.The evaluation results show that the MSCT has an excellent ability to process the nonlinear frequency modulation signal,and can accurately extract the roll angular rate for the high spinning projectiles.
基金supported by the National Natural Science Foundation-supported Program(515750055)Beijing Municipal Natural Science Foundation(3131002)
文摘A fault identification method ofrotating machinery is proposed,which combines wavelet packet of time-frequency analysis and manifold learning.Firstly,the sampled vibration signal is decomposed to multilayer information with wavelet packet decomposition(WPD) method.Andevery level data of wavelet packet decomposition is processed bydemodulatingof Hilbert transform,eliminating the high frequency noiseof FIR filterand reducing the data length of the low frequency of resampling.Further,every level data vector is deal with normalization and calculated for the auto power spectrum.Finally,the manifold learning methods of t distributed stochastic neighbor embedding(t-SNE) is applied to do dimension reduction to generate 2D manifold figure data.Different fault forms of gearbox have different manifold features,which is used to identify failure status of equipment.With the experiment test,the feasibility and effectiveness of this identification method is verified.
基金supported by the National Natural Science Fundation of China (61203238 61134005+5 种基金 60921001 90916024 91116016)the National Basic Research Program of China (973 Program) (2012CB8212002012CB821201)the National Science Foundation for Postdoctoral Scientists of China (2012M520140)
文摘The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear programming (LP) based branchand-bound method and adjusting the constraint conditions, an optimal set integer programming (OSIP) algorithm is then proposed for tracking multiple non-maneuvering targets in clutter. For the case of maneuvering targets, this paper introduces the OSIP algorithm into the filtering step of the interacting multiple model (IMM) algorithm resulting in the IMM based on OSIP algorithm. Extensive Monte Carlo simulations show that the presented algorithms can obtain superior estimations even in the case of high density noises.
基金supported by the Project of National Natural Science Foundation of China(51275052)the Project of Science and Technique Development Plan of Beijing Municipal Commission of Education(KM201311232022)
文摘The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation is a reasonable way to improve motion precision. A motion compensation method based on neural network of radial basis function(RBF) was presented in this paper. It utilized the infinite approximation advantage of RBF neural network to fit the motion error curve. The best hidden neural quantity was optimized by training the motion error data and calculating the total sum of squares. The best curve coefficient matrix was got and used to calculate motion compensation values. The experiments showed that the motion errors could be reduced obviously by utilizing the method in this paper.
基金Supported by Seminar of National Social Funds Project(12&ZD234)
文摘Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method.
基金the financial support of National Natural Science Foundation of China through grant nos.11872127,11832002,11732005Qin Xin Talents Cultivation ProgramBeijing Information Science&Technology University QXTCP A201901。
文摘In this paper,the blade is assumed to be a rotating variable thickness cantilever twisted plate structure,and the natural vibrations of variable thickness cantilever twisted plate made of metal porous material are studied.It is assumed that the thickness of the plate changes along spanwise direction and chordwise direction,respectively,and it changes in both directions.The classical thin shell theory,the first and second fundamental forms of surface and von Karman geometric relationship are employed to derive the total potential energy and kinetic energy of the cantilever twisted plate,in which the centrifugal force potential due to high rotational speed is included.Then,according to the Rayleigh-Ritz procedure and applying the polynomial functions which satisfy the cantilever boundary conditions,the dynamic system expressed by equations of motion is reduced to an eigenvalue problem.By numerical simulation,the frequency curves and the mode shapes of the twisted plate can be obtained to reveal the internal connection between natural vibration and the parameters.A series of comparison studies are performed to verify the accuracy of the present formulation and calculations,in which compared data come from experimental,finite element method and theoretical calculation,respectively.The influence of pre-twist angle,three different forms of thickness taper ratio and rotational speed on natural vibration,mode exchange and frequency veering phenomenon of the system is discussed in detail.In addition,the approach proposed here can efficiently extract analytical expressions of mode functions for rotating variable thickness cantilever twisted plate structures.
基金supported by the National Natural Science Foundation-supported Program(51275052&51575055)
文摘Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.