Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has seve...Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.展开更多
基金Fundamental Research Funds for the Central Universities(YWF-23-L-1225)National Natural Science Foundation of China(62201025)Chinese Aeronautical Establishment(2022Z037051001)。
文摘Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.