期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced Phytoextraction of Cd and Cu in Ricinus communis L.with Chelators Related to Metal Concentrations in Soil Pore Water
1
作者 Guo Jinghua Wang Shuifeng 《Journal of Northeast Agricultural University(English Edition)》 2025年第1期19-26,共8页
Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or C... Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L. 展开更多
关键词 environmental science soil contamination PHYTOREMEDIATION Ricinus communis L. CHELATOR
在线阅读 下载PDF
Hydrogenation of CO_(2)to formate catalyzed by N⁃heterocyclic carbene⁃nitrogen⁃phosphine chelated iridium(Ⅰ)complexes
2
作者 GONG Huihua CUI Tianhua +6 位作者 JI Li ZHANG Jichuan ZHANG Liyuan CHEN Yan WANG Zhenye XU Jiaqi LI Ruixiang 《无机化学学报》 2025年第12期2609-2620,共12页
To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)... To achieve efficient catalytic hydrogenation of CO_(2)to formate,we employed a transmetallation strategy to develop three novel iridium(Ⅰ)complexes,which feature N‑heterocyclic carbene‑nitrogen‑phosphine ligands(CNP)and a 1,5‑cyclooctadiene(cod)molecule:[Ir(cod)(κ^(3)‑CN^(im)P)]Cl(1⁃Cl),[Ir(cod)(κ^(3)‑CN^(im)P)]PF6(1⁃PF_(6)),and[Ir(cod)(κ^(3)‑CNHP)]Cl(2).The^(1)H NMR spectra,^(31)P NMR spectra,and high‑resolution mass spectra verify the successful synthesis of these three Ir(Ⅰ)‑CNP complexes.Furthermore,single‑crystal X‑ray diffraction analysis confirms the coordination geometry of 1⁃PF_(6).The strong Ir—C(NHC)bond suggests that the carbene carbon plays an enhanced anchoring role to iridium due to its strongσ‑donating ability,which helps stabilize the active metal species during CO_(2)hydrogenation.As a result,the Ir(Ⅰ)‑CNP complex exhibits remarkable activity and long catalytic lifetime for the hydrogenation of CO_(2)to formate,reaching a turnover number(TON)of 1.16×10^(6)after 150 h at a high temperature of 170℃,which was a relatively high value among all the Ir complexes.CCDC:2384071,1⁃PF_(6). 展开更多
关键词 CO_(2)hydrogenation iridium complex CNP ligands homogeneous catalysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部