In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanne...In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems.展开更多
Rich semantic information in natural language increases team efficiency in human collaboration, reduces dependence on high precision data information, and improves adaptability to dynamic environment. We propose a sem...Rich semantic information in natural language increases team efficiency in human collaboration, reduces dependence on high precision data information, and improves adaptability to dynamic environment. We propose a semantic centered cloud control framework for cooperative multi-unmanned ground vehicle(UGV) system. Firstly, semantic modeling of task and environment is implemented by ontology to build a unified conceptual architecture, and secondly, a scene semantic information extraction method combining deep learning and semantic web rule language(SWRL) rules is used to realize the scene understanding and task-level cloud task cooperation. Finally, simulation results show that the framework is a feasible way to enable autonomous unmanned systems to conduct cooperative tasks.展开更多
To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the result...To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.展开更多
基金the Military Science Postgraduate Project of PLA(JY2020B006).
文摘In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems.
基金supported by the National Defense Science and Technology Innovation Zone of China (193-A13-203-01-01)the Military Science Postgraduate Project of PLA (JY2020B006)。
文摘Rich semantic information in natural language increases team efficiency in human collaboration, reduces dependence on high precision data information, and improves adaptability to dynamic environment. We propose a semantic centered cloud control framework for cooperative multi-unmanned ground vehicle(UGV) system. Firstly, semantic modeling of task and environment is implemented by ontology to build a unified conceptual architecture, and secondly, a scene semantic information extraction method combining deep learning and semantic web rule language(SWRL) rules is used to realize the scene understanding and task-level cloud task cooperation. Finally, simulation results show that the framework is a feasible way to enable autonomous unmanned systems to conduct cooperative tasks.
基金supported by the National Natural Science Foundation of China(72001213)the basic research program of Natural Science of Shaanxi Province,China(2021JQ-369).
文摘To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.