期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics 被引量:2
1
作者 J.D.CLAYTON 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第4期334-342,共9页
Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse ... Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide.Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature(e.g., Tate's theory) demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit(HEL) only in the latter. In contrast, in the former(i.e., hypervelocity and thick target) experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.Production and hosting by Elsevier B.V. on behalf of China Ordnance Society. 展开更多
关键词 CERAMICS Terminal ballistics ARMOR Dimensional analysis HYDRODYNAMICS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部