期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于关键帧的频域多特征融合的Deepfake视频检测
1
作者 王金伟 张玫瑰 +2 位作者 张家伟 罗向阳 马宾 《应用科学学报》 北大核心 2025年第3期451-462,共12页
现有的Deepfake视频检测方法为节约计算资源,避免数据冗余,大多随机选取视频的多帧或部分段作为检测对象,因而会降低检测对象的表征能力以及限制检测的性能。此外,现有算法在单一数据集上的检测效果良好,但在跨数据集检测时性能下降严重... 现有的Deepfake视频检测方法为节约计算资源,避免数据冗余,大多随机选取视频的多帧或部分段作为检测对象,因而会降低检测对象的表征能力以及限制检测的性能。此外,现有算法在单一数据集上的检测效果良好,但在跨数据集检测时性能下降严重,泛化能力有待进一步提升。为此,提出了一种基于关键帧的频域多特征融合的Deepfake视频检测算法。利用频域的均方误差提取关键帧作为检测对象,并将频域学习主帧的伪影特征和关键帧间的时间不一致性进行融合后输入到全连接层中,从而获得最终的检测结果。实验结果表明,所提算法在跨数据集检测任务中的性能优于现有算法,具有较强的泛化性。 展开更多
关键词 Deepfake视频检测 关键帧 频域 多特征融合
在线阅读 下载PDF
基于解压缩模块的JPEG同步重压缩检测 被引量:2
2
作者 王金伟 胡冰涛 +2 位作者 张家伟 马宾 罗向阳 《电子学报》 EI CAS CSCD 北大核心 2023年第4期850-859,共10页
现有的基于深度学习的同步JPEG(JointPhotographic ExpertsGroup)重压缩检测算法大多使用解压缩过程中产生的截断和舍入误差作为分类依据,在检测框架前都存在降低特征提取难度的预处理层,无法实现端到端.同时,现有的量化底表是根据人为... 现有的基于深度学习的同步JPEG(JointPhotographic ExpertsGroup)重压缩检测算法大多使用解压缩过程中产生的截断和舍入误差作为分类依据,在检测框架前都存在降低特征提取难度的预处理层,无法实现端到端.同时,现有的量化底表是根据人为经验所设计的,无法取得解压缩过程的最优解,限制了JPEG重压缩检测算法的精度上限.针对这些问题,本文提出了一种基于解压缩模块的JPEG重压缩检测方法,该方法利用卷积模拟JPEG解压缩过程,设计了解压缩模块,将JPEG解压缩过程并入网络中从而实现端到端,省去了繁重的预处理步骤;同时,利用深度学习能够自动优化参数的特性,自动去寻找解压缩过程的最优解,减少了由于人工处理导致的图像信息的二次损失,进一步提升了JPEG重压缩检测算法的性能上限.实验结果表明,本文所提出的JPEG同步重压缩检测算法在超过半数的实验组上都取得了较好的取证表现,在UCID数据集上比现有方法平均精度最多提高1.8%. 展开更多
关键词 数字图像取证 卷积神经网络 JPEG重压缩 解压缩模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部