期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于数字孪生及GA-BP神经网络的开关柜温升风险预测
1
作者
谢汶含
蒋永清
+2 位作者
孙大伟
王志伟
孙超
《中国安全生产科学技术》
北大核心
2025年第2期184-190,共7页
风电机组开关柜是风电场的重要电力设备之一,为保障开关柜的稳定运行和风电机组的安全,针对开关柜内部器件温升异常问题进行研究。采用数字孪生技术对开关柜温升状态进行数字化建模,设计开关柜数字孪生架构模型,在不同条件下仿真开关柜...
风电机组开关柜是风电场的重要电力设备之一,为保障开关柜的稳定运行和风电机组的安全,针对开关柜内部器件温升异常问题进行研究。采用数字孪生技术对开关柜温升状态进行数字化建模,设计开关柜数字孪生架构模型,在不同条件下仿真开关柜触头温升,通过GA-BP神经网络对温升数据进行训练学习,实现触头温升异常风险预测。研究结果表明:数字孪生体可再现物理开关柜运行的全部温度数据,通过GA-BP网络模型预测开关柜温升风险平均绝对百分比误差为0.03%,可实现温升风险准确预测,避免开关柜因温升过高而导致热故障发生。
展开更多
关键词
开关柜
温升
风险预测
数字孪生
GA-BP神经网络
在线阅读
下载PDF
职称材料
题名
基于数字孪生及GA-BP神经网络的开关柜温升风险预测
1
作者
谢汶含
蒋永清
孙大伟
王志伟
孙超
机构
哈尔滨理工大学测控技术与通信工程学院
黑龙江省新产业投资集团有限公司
黑龙江
辰能清洁能源
有限公司
出处
《中国安全生产科学技术》
北大核心
2025年第2期184-190,共7页
基金
国家自然科学基金项目(11704090)。
文摘
风电机组开关柜是风电场的重要电力设备之一,为保障开关柜的稳定运行和风电机组的安全,针对开关柜内部器件温升异常问题进行研究。采用数字孪生技术对开关柜温升状态进行数字化建模,设计开关柜数字孪生架构模型,在不同条件下仿真开关柜触头温升,通过GA-BP神经网络对温升数据进行训练学习,实现触头温升异常风险预测。研究结果表明:数字孪生体可再现物理开关柜运行的全部温度数据,通过GA-BP网络模型预测开关柜温升风险平均绝对百分比误差为0.03%,可实现温升风险准确预测,避免开关柜因温升过高而导致热故障发生。
关键词
开关柜
温升
风险预测
数字孪生
GA-BP神经网络
Keywords
switchgear
temperature rise
risk prediction
digital twin
GA-BP neural network
分类号
X913 [环境科学与工程—安全科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于数字孪生及GA-BP神经网络的开关柜温升风险预测
谢汶含
蒋永清
孙大伟
王志伟
孙超
《中国安全生产科学技术》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部