期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
PHD粒子滤波中目标状态提取方法研究 被引量:7
1
作者 唐续 魏平 陈欣 《电子与信息学报》 EI CSCD 北大核心 2010年第11期2691-2694,共4页
采用概率假设密度(PHD)粒子滤波进行多目标跟踪时,各时刻的目标状态表现为大量的加权粒子,需以一定方法从该粒子近似中提取出来。该文提出一种增强的目标状态提取方法,先以k-means算法对粒子进行空间分布的聚类,再于各类中寻找粒子权的... 采用概率假设密度(PHD)粒子滤波进行多目标跟踪时,各时刻的目标状态表现为大量的加权粒子,需以一定方法从该粒子近似中提取出来。该文提出一种增强的目标状态提取方法,先以k-means算法对粒子进行空间分布的聚类,再于各类中寻找粒子权的峰值位置作为目标状态的估计。仿真结果表明:由于综合利用了粒子的权值和空间分布信息,该算法具有比现有算法更小的目标状态估计误差。 展开更多
关键词 多目标跟踪 贝叶斯滤波 粒子滤波 概率假设密度 聚类
在线阅读 下载PDF
多尺度卷积特征融合的SSD目标检测算法 被引量:56
2
作者 陈幻杰 王琦琦 +4 位作者 杨国威 韩佳林 尹成娟 陈隽 王以忠 《计算机科学与探索》 CSCD 北大核心 2019年第6期1049-1061,共13页
提出了一种改进的多尺度卷积特征目标检测方法,用以提高SSD(single shot multibox detector)模型对中目标和小目标的检测精确度。该方法先对SSD模型低层特征层采用区域放大提取的方法以提高对小目标的检测能力,再对高层特征层进行特征... 提出了一种改进的多尺度卷积特征目标检测方法,用以提高SSD(single shot multibox detector)模型对中目标和小目标的检测精确度。该方法先对SSD模型低层特征层采用区域放大提取的方法以提高对小目标的检测能力,再对高层特征层进行特征提取以改善中目标的检测效果。最后,利用SSD模型中原有的多尺度卷积检测方法,将改进的多层特征检测结果进行融合,并通过参数再训练以获得最终改进的SSD模型。实验结果表明,该方法在MS COCO数据集上对中目标和小目标的测试精确度分别为75.1%和40.5%,相比于原有SSD模型分别提升16.3%和23.1%。 展开更多
关键词 单次多框目标检测器(SSD)模型 多尺度特征融合 目标检测 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部