期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
AI for PDEs在固体力学领域的研究进展
1
作者 王一铮 庄晓莹 +1 位作者 Timon Rabczcuk 刘应华 《力学进展》 北大核心 2025年第2期231-287,共57页
近几年来,深度学习无所不在,赋能于各个领域.尤其是人工智能与传统科学的结合(AI for science,AI4Science)引发广泛关注.在AI4Science领域,利用人工智能算法求解PDEs(AI4PDEs)已成为计算力学研究的焦点.AI4PDEs的核心是将数据与方程相融... 近几年来,深度学习无所不在,赋能于各个领域.尤其是人工智能与传统科学的结合(AI for science,AI4Science)引发广泛关注.在AI4Science领域,利用人工智能算法求解PDEs(AI4PDEs)已成为计算力学研究的焦点.AI4PDEs的核心是将数据与方程相融合,并且几乎可以求解任何偏微分方程问题,由于其融合数据的优势,相较于传统算法,其计算效率通常提升数万倍.因此,本文全面综述了AI4PDEs的研究,总结了现有AI4PDEs算法、理论,并讨论了其在固体力学中的应用,包括正问题和反问题,展望了未来研究方向,尤其是必然会出现的计算力学大模型.现有AI4PDEs算法包括基于物理信息神经网络(physicsinformed neural network,PINNs)、深度能量法(deep energy methods,DEM)、算子学习(operator learning),以及基于物理神经网络算子(physics-informed neural operator,PINO).AI4PDEs在科学计算中有许多应用,本文聚焦于固体力学,正问题包括线弹性、弹塑性,超弹性、以及断裂力学;反问题包括材料参数,本构,缺陷的识别,以及拓朴优化.AI4PDEs代表了一种全新的科学模拟方法,通过利用大量数据在特定问题上提供近似解,然后根据具体的物理方程进行微调,避免了像传统算法那样从头开始计算,因此AI4PDEs是未来计算力学大模型的雏形,能够大大加速传统数值算法.我们相信,利用人工智能助力科学计算不仅仅是计算领域的未来重要方向,同时也是计算力学的未来,即是智能计算力学。 展开更多
关键词 PINNs(基于物理信息神经网络) 算子学习 计算力学 AI for PDES 固体力学
在线阅读 下载PDF
近场动力学算子方法 被引量:2
2
作者 李志远 黄丹 Timon Rabczuk 《力学学报》 EI CAS CSCD 北大核心 2023年第7期1593-1603,共11页
提出一种基于非局部思想求解物理学问题的近场动力学算子方法 (peridynamic operator method, PDOM).运用PDOM可将任意阶局部微分及其乘积转化为相应的非局部积分形式,且无需额外地特殊处理间断点与奇异点等问题.近年来研究较多的两种... 提出一种基于非局部思想求解物理学问题的近场动力学算子方法 (peridynamic operator method, PDOM).运用PDOM可将任意阶局部微分及其乘积转化为相应的非局部积分形式,且无需额外地特殊处理间断点与奇异点等问题.近年来研究较多的两种非局部算子:近场动力学微分算子(peridynamic differential operator,PDDO)和非局部算子方法 (nonlocal operator method, NOM),均可视为PDOM的一种特例.以弹性力学问题为例,采用变分原理和拉格朗日方程,建立了适用于分析静/动态弹性力学问题的PDOM模型.理论分析表明,当分别限定相互作用域为与位置无关或位置相关的圆形域时,该PDOM弹性模型即可退化为近年来文献中常见的近场动力学(peridynamics, PD)模型或对偶域近场动力学(dual-horizon peridynamics, DH-PD)模型.通过3个典型实例:杆的拉伸与波动、亥姆霍兹方程和含孔板的拉伸,说明本方法的计算精度、收敛性与数值稳定性.PDOM方法适用于任意均匀或非均匀离散,且能有效避免零能模式以及由其引起的数值振荡,可望为各种物理学问题特别是不连续问题的非局部建模求解提供一种新选择. 展开更多
关键词 微分方程 近场动力学 非局部 变分原理 拉格朗日方程
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部