期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于VPMELM的滚动轴承劣化状态辨识方法 被引量:8
1
作者 郑近德 潘海洋 +1 位作者 童宝宏 张良安 《振动与冲击》 EI CSCD 北大核心 2017年第7期57-61,共5页
针对变量预测模型模式识别方法(VPMCD)仅仅包含几种简单数学模型的问题,所建立的预测模型不足以反映特征值之间的复杂关系;极限学习机(ELM)回归模型是一种复杂且被广泛应用的模型,其模型可以反映特征之间的相互关系。结合极限学习机回... 针对变量预测模型模式识别方法(VPMCD)仅仅包含几种简单数学模型的问题,所建立的预测模型不足以反映特征值之间的复杂关系;极限学习机(ELM)回归模型是一种复杂且被广泛应用的模型,其模型可以反映特征之间的相互关系。结合极限学习机回归模型和VPMCD方法的优点,提出了一种基于极限学习机的变量预测模型(VPMELM)模式识别方法,并将该方法应用于滚动轴承劣化状态实验中。实验表明,基于VPMELM的辨识方法可以有效地对滚动轴承的劣化状态进行识别。 展开更多
关键词 极限学习机 变量预测模式识别方法 基于极限学习机的变量预测模型 滚动轴承
在线阅读 下载PDF
基于稀疏带宽模态分解的变转速滚动轴承故障诊断 被引量:5
2
作者 潘海洋 郑近德 +1 位作者 童宝宏 张良安 《振动与冲击》 EI CSCD 北大核心 2017年第14期92-97,共6页
针对以往信号处理方法存在的缺陷,提出了一种新的非平稳信号分析方法—稀疏带宽模态分解(Sparse bandwidth mode decomposition,SBMD).该方法将信号分解转化为约束变分问题,自适应地将信号分解为若干个IMF分量之和。另外,在变转速工况下... 针对以往信号处理方法存在的缺陷,提出了一种新的非平稳信号分析方法—稀疏带宽模态分解(Sparse bandwidth mode decomposition,SBMD).该方法将信号分解转化为约束变分问题,自适应地将信号分解为若干个IMF分量之和。另外,在变转速工况下,滚动轴承故障振动信号中含丰富的状态信息,将SBMD、阶次追踪分析和包络谱相结合应用于变转速工况条件下的滚动轴承故障诊断问题。实验分析结果表明,采用SBMD阶次包络谱方法可以及时有效的诊断变转速工况下的滚动轴承故障诊断问题。 展开更多
关键词 稀疏带宽模态分解 阶次追踪分析 包络谱 滚动轴承 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部