期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
空间众包中基于位置预测的任务分配 被引量:4
1
作者 张晨 郭玉超 +4 位作者 林培光 任威隆 张森 聂秀山 任可 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期471-480,共10页
随着移动设备的普及和O2O(Online-To-Offline)商业模式的快速发展,越来越多的空间众包平台融入人们的日常生活中,例如滴滴出行、饿了么等等.空间众包中的一个核心问题是任务分配,主要研究如何将空间任务分配给合适的众包工人.任务分配... 随着移动设备的普及和O2O(Online-To-Offline)商业模式的快速发展,越来越多的空间众包平台融入人们的日常生活中,例如滴滴出行、饿了么等等.空间众包中的一个核心问题是任务分配,主要研究如何将空间任务分配给合适的众包工人.任务分配方式主要分为服务器分配模式(Server Assigned Task,SAT)和用户选择模式(Worker Selected Task,WST)两种模式,目前多数统一规范化的众包服务采用SAT模式,即系统主动将任务分配给任务请求位置附近的众包工人.在此任务分配模式下,众包工人和任务之间的旅行成本变得至关重要,较少的旅行成本意味着较少的响应时间和较高的任务接受率.因此提出了基于位置预测的任务分配方式,该方式不仅考虑任务和众包工人的当前位置,还考虑未来任务可能出现的位置,从而降低旅行成本和相应时间.首先设计了贪婪方法(Greedy Approach),然后在贪婪方法的基础上通过贝叶斯、支持向量机、决策树等方法预测未来任务的分布来辅助分配任务,最后在真实数据上进行的实验表明,该方法减小了在长时间内的总旅行成本,具有较好的性能. 展开更多
关键词 空间众包 任务分配 任务预测 旅行成本 Kuhn-Munkres算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部