期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RKDG有限元GPU 算法及其重排加速技术
1
作者 高缓钦 陈红全 +1 位作者 张加乐 贾雪松 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2023年第8期32-42,共11页
为提升并行化求解Navier Stokes方程的效率,构建了高阶有限元单元及单元边界映射线程结构和对应的各类GPU核函数,成功地把RKDG方法移植到GPU架构,发展出RKDG有限元GPU并行算法。算法数据访存能兼容GPU快慢不一的存储器,尤其在结构网格上... 为提升并行化求解Navier Stokes方程的效率,构建了高阶有限元单元及单元边界映射线程结构和对应的各类GPU核函数,成功地把RKDG方法移植到GPU架构,发展出RKDG有限元GPU并行算法。算法数据访存能兼容GPU快慢不一的存储器,尤其在结构网格上,算法涉及的数据依赖区结构有序,能较好满足GPU对齐合并访问的要求。但在非结构网格上,非结构化的数据依赖区,影响到访存效率。基于此提出一种适合高阶有限元算法框架的单元分层重排加速技术,致力于网格的层化结构,提升GPU访存效率。具体基于初始网格拓扑,创建单元或单元边界对应的分层结构,逐层重排,汇总形成适合GPU对齐合并访问的数据存储结构。文中结合排序实例,给出了这一重排加速技术的具体实施过程。算例表明,发展的算法逼近的阶数符合预期,计算结果能与现有文献或实验结果接近,且最大GPU加速比可达67.47。此外,非结构网格算例证实,算法可处理较为复杂的几何边界,且所提重排技术可进一步赢得重排加速。 展开更多
关键词 RKDG方法 GPU 分层排序 非结构网格 Navier Stokes方程
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部