期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于精细化多尺度Kolmogorov熵与WOA-SVM的滚动轴承故障诊断
1
作者
李希垒
王冰
+1 位作者
胡雄
金鑫
《机床与液压》
北大核心
2025年第8期18-27,共10页
为了进一步提高滚动轴承故障诊断的准确率,提出一种基于精细化多尺度Kolmogorov熵和鲸鱼优化多分类支持向量机(FGMKE-WOA-SVM)的故障诊断方法。对振动信号进行精细化多尺度分解,提取各尺度子信号的Kolmogorov熵,构建多维故障特征向量,...
为了进一步提高滚动轴承故障诊断的准确率,提出一种基于精细化多尺度Kolmogorov熵和鲸鱼优化多分类支持向量机(FGMKE-WOA-SVM)的故障诊断方法。对振动信号进行精细化多尺度分解,提取各尺度子信号的Kolmogorov熵,构建多维故障特征向量,以此定量表征信号在不同分辨率下的复杂度。针对多分类支持向量机模型参数敏感问题,引入鲸鱼优化算法(WOA)优化惩罚因子和核函数参数,构建最优WOA-SVM模型。最后,基于江南大学数据集的实验表明:该方法能够有效分析参数对模型稳定性的影响,并在不平衡样本集上实现高精度故障诊断;与KNN、DT等模型及不同特征输入方法相比,所提方法计算速度快、诊断效率高,具有显著优越性。
展开更多
关键词
滚动轴承
故障诊断
特征选择
支持向量机
多尺度分析
Kolmogorov熵
在线阅读
下载PDF
职称材料
题名
基于精细化多尺度Kolmogorov熵与WOA-SVM的滚动轴承故障诊断
1
作者
李希垒
王冰
胡雄
金鑫
机构
上海海事大学物流工程学院
青岛港口装备制造有限公司
出处
《机床与液压》
北大核心
2025年第8期18-27,共10页
基金
国家自然科学基金面上项目(62073213)
博士后科研基金(2014M561458)
+1 种基金
上海自然科学基金(23ZR1426700)
上海市工程技术研究中心建设计划
文摘
为了进一步提高滚动轴承故障诊断的准确率,提出一种基于精细化多尺度Kolmogorov熵和鲸鱼优化多分类支持向量机(FGMKE-WOA-SVM)的故障诊断方法。对振动信号进行精细化多尺度分解,提取各尺度子信号的Kolmogorov熵,构建多维故障特征向量,以此定量表征信号在不同分辨率下的复杂度。针对多分类支持向量机模型参数敏感问题,引入鲸鱼优化算法(WOA)优化惩罚因子和核函数参数,构建最优WOA-SVM模型。最后,基于江南大学数据集的实验表明:该方法能够有效分析参数对模型稳定性的影响,并在不平衡样本集上实现高精度故障诊断;与KNN、DT等模型及不同特征输入方法相比,所提方法计算速度快、诊断效率高,具有显著优越性。
关键词
滚动轴承
故障诊断
特征选择
支持向量机
多尺度分析
Kolmogorov熵
Keywords
rolling bearings
fault diagnosis
feature selection
support vector machine(SVM)
multiscale analysis
Kolmogorov entropy
分类号
TH133.33 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于精细化多尺度Kolmogorov熵与WOA-SVM的滚动轴承故障诊断
李希垒
王冰
胡雄
金鑫
《机床与液压》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部