期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于精细化多尺度Kolmogorov熵与WOA-SVM的滚动轴承故障诊断
1
作者 李希垒 王冰 +1 位作者 胡雄 金鑫 《机床与液压》 北大核心 2025年第8期18-27,共10页
为了进一步提高滚动轴承故障诊断的准确率,提出一种基于精细化多尺度Kolmogorov熵和鲸鱼优化多分类支持向量机(FGMKE-WOA-SVM)的故障诊断方法。对振动信号进行精细化多尺度分解,提取各尺度子信号的Kolmogorov熵,构建多维故障特征向量,... 为了进一步提高滚动轴承故障诊断的准确率,提出一种基于精细化多尺度Kolmogorov熵和鲸鱼优化多分类支持向量机(FGMKE-WOA-SVM)的故障诊断方法。对振动信号进行精细化多尺度分解,提取各尺度子信号的Kolmogorov熵,构建多维故障特征向量,以此定量表征信号在不同分辨率下的复杂度。针对多分类支持向量机模型参数敏感问题,引入鲸鱼优化算法(WOA)优化惩罚因子和核函数参数,构建最优WOA-SVM模型。最后,基于江南大学数据集的实验表明:该方法能够有效分析参数对模型稳定性的影响,并在不平衡样本集上实现高精度故障诊断;与KNN、DT等模型及不同特征输入方法相比,所提方法计算速度快、诊断效率高,具有显著优越性。 展开更多
关键词 滚动轴承 故障诊断 特征选择 支持向量机 多尺度分析 Kolmogorov熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部