针对传统的图像分割方法计算量大、抗噪性弱等问题,将新型的智能仿生优化算法——人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)和小波变换有效地应用到图像分割中,并提出一种并行的阈值分割方法。采用合适的固定步长与自适应步...针对传统的图像分割方法计算量大、抗噪性弱等问题,将新型的智能仿生优化算法——人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)和小波变换有效地应用到图像分割中,并提出一种并行的阈值分割方法。采用合适的固定步长与自适应步长相结合的方法提高AFSA收敛速度,利用小波变换对小波系数进行阈值处理来提升图像信噪比。利用二维Otsu作为人工鱼群算法的适应度函数,以获得最优阈值。实验结果显示,该方法在分割质量和降噪方面较潘喆等人提出的方法有明显提高。展开更多
提出一种基于场景模型和统计学习的行人检测算法.针对训练行人检测器时面临的动态场景的复杂性和行人样本多样性等问题,通过背景建模,从场景的背景图像上提取有限的负样本用于训练,大幅度提高了分类器的检测率,同时降低了虚警;提出一种...提出一种基于场景模型和统计学习的行人检测算法.针对训练行人检测器时面临的动态场景的复杂性和行人样本多样性等问题,通过背景建模,从场景的背景图像上提取有限的负样本用于训练,大幅度提高了分类器的检测率,同时降低了虚警;提出一种快速弱分类器选择算法,根据正、负样本特征大小的分布和期望的检测率,直接求解特征大小的阈值范围,能够满足在线训练和更新检测器的要求;提出一种基于正样本错误率的训练算法,先根据正样本加权错误率选择弱分类器,快速提高检测率,在训练结束后调整最终分类器的加权系数,在保证检测率的同时尽可能降低虚警率.实验中构建了一个试验视频数据库和行人样本库,数据库包括雨、雪、阴影、季节变化、摄像机平移、旋转、缩放等情况,并设计实现了一个实时行人检测系统BMAT(Background modeling and Adaboost training),实验结果证明了算法的有效性.展开更多
文摘针对传统的图像分割方法计算量大、抗噪性弱等问题,将新型的智能仿生优化算法——人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)和小波变换有效地应用到图像分割中,并提出一种并行的阈值分割方法。采用合适的固定步长与自适应步长相结合的方法提高AFSA收敛速度,利用小波变换对小波系数进行阈值处理来提升图像信噪比。利用二维Otsu作为人工鱼群算法的适应度函数,以获得最优阈值。实验结果显示,该方法在分割质量和降噪方面较潘喆等人提出的方法有明显提高。
文摘提出一种基于场景模型和统计学习的行人检测算法.针对训练行人检测器时面临的动态场景的复杂性和行人样本多样性等问题,通过背景建模,从场景的背景图像上提取有限的负样本用于训练,大幅度提高了分类器的检测率,同时降低了虚警;提出一种快速弱分类器选择算法,根据正、负样本特征大小的分布和期望的检测率,直接求解特征大小的阈值范围,能够满足在线训练和更新检测器的要求;提出一种基于正样本错误率的训练算法,先根据正样本加权错误率选择弱分类器,快速提高检测率,在训练结束后调整最终分类器的加权系数,在保证检测率的同时尽可能降低虚警率.实验中构建了一个试验视频数据库和行人样本库,数据库包括雨、雪、阴影、季节变化、摄像机平移、旋转、缩放等情况,并设计实现了一个实时行人检测系统BMAT(Background modeling and Adaboost training),实验结果证明了算法的有效性.